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Abstract

We investigate the effect of spatially localized inhomogeneities on a spatially homo-

geneous oscillation in a reaction-diffusion system. In dimension up to 2, we find sources

and contact defects, that is, the inhomogeneity may either send out phase waves or act

as a weak sink. We show that small inhomogeneities cannot act as sources in more than

2 space dimensions. We also derive asymptotics for wavenumbers and group velocities in

the far field. The results are established rigorously for radially symmetric inhomogeneities

in reaction-diffusion systems, and for arbitrary inhomogeneities in a modulation equation

approximation.
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1 Oscillatory reaction-diffusion systems

1.1 Introduction

We are interested in patterns that arise in dissipative, spatially extended systems far from

equilibrium. The arguably simplest non-equilibrium pattern in a dynamical system is a peri-

odic orbit. Periodic orbits are ubiquitous in dynamical systems, a fact which is partly justified

by their robustness. Indeed, when studying ordinary differential equations or partial differ-

ential equations posed on bounded domains, periodic orbits are typically robust: the trivial

Floquet multiplier associated with the phase of the oscillation is algebraically simple, and

for any small perturbation of the system, one will find a nearby periodic orbit, with similar

frequency.
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Spatially extended, large systems of oscillators have attracted attention in the physical and

mathematical literature in many contexts. A classical prominent example is the Belousov-

Zhabotinsky reaction, a reaction-diffusion system where the chemical concentrations undergo

a relaxation-type oscillation which can be sustained for many cycles; see for example [25, 9].

Other examples include biological systems such as cardiac tissue [24], neural systems [23], and

ecological systems [6].

When studying such large systems, in unbounded or in large domains, two interrelated issues

complicate the concept of a robust oscillation.

First, robustness turns out to be a delicate issue on a technical level. In large domains,

the fixed point problem for the Poincare map is ill-conditioned due to clusters of eigenvalues

of the linearization near the neutral phase mode; in unbounded domains, the neutral phase

mode is even embedded into a continuum of spectrum; see Section 1.3, below. The spatial

diffusive coupling, is responsible for this lack of separation between slow phase modes and the

fast normal modes near the periodic orbit, since it covers a full band of possible exponential

relaxation rates. As a consequence, it is often not obvious if periodic orbits are robust under

changes of system parameters!

Second, periodic orbits come in very different spatial flavors: spatially homogeneous oscilla-

tions, plane waves, target patterns, and spiral waves, to name but a few. A perturbation

theory for spatially extended systems should be able to distinguish between those different

types of periodic solutions.

Wave trains, the simplest non-homogeneous periodic solutions, are solutions where the phase

Φ of the oscillation varies periodically in both time and space. Associated with this variation

of the phase is the group velocity cg of a wave train: small, spatially localized variations of

the phase Φ(t = 0) = Φ0(x) are simply advected to leading order, Φ(t, x) = Φ0(x − cgt).

Wave trains come in one-parameter families with parameter k, the wavenumber of the spatial

variation of the phase. In [17], more general time-periodic solutions of reaction-diffusion

systems posed on x ∈ R were classified according to their limiting behavior at x = ±∞.

In addition to periodicity, the crucial assumption was convergence to wave trains in the far

field. Such solutions, time-periodic and asymptotic to wave trains, were referred to as defects

or coherent structures. The crucial property of such solutions turned out to be the sign of

the group velocities at the wave trains at ±∞: physically, they determine the direction in

which perturbations are transported, away or towards the center of the coherent structure;

mathematically, they determine Fredholm indices of the linearized period map close to the

trivial multiplier 1, and hence give multiplicity results. In summary, the physically relevant

”shape”, as determined by the group velocities, determines mathematical robustness and

multiplicity properties; see Figure 1.1, below for a short summary of the results, connecting

transport and multiplicity properties.

The simplest scenario, where the different types of coherent structures emerge, is when a spa-

tially system with a spatially homogeneous oscillation is perturbed by introducing a spatially

localized inhomogeneity. It was noted in [17] that wave trains may nucleate at the small in-

homogeneity, leading to sources. We pick up this example in this article and study the case

of space dimensions two and higher. Our main results characterize the existence of coher-
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Figure 1.1: The picture shows schematic space-time plots of the four types of coherent structures that were

studied in [17]. The vertical brown bar denotes the location of a defect, where the pattern is not necessarily

close to the wave trains. Blue and green lines denote lines of constant phase in the oscillation, with in- and

outgoing group velocities, respectively. Sources (i) are isolated, they occur for discrete sets of asymptotic

wavenumbers k±, group velocities point away from the center. Sinks (ii) come in two-parameter families, group

velocities point towards the center, and asymptotic wavenumbers can be prescribed. For transmission defects

(iii), group velocities point point in the same direction, k+k− > 0; only the wavenumber with ingoing group

velocity can be prescribed, the wavenumber with outgoing group velocity is selected. For contact defect (iv),

the group velocities vanish at infinity. Asymptotic wavenumbers are typically equal.

ent structures, that is, time-periodic solutions which converge to wave trains as |x| → ∞ for

small inhomogeneities. We exhibit a dichotomy similar to the one-dimensional case, between

sources, where group velocities point away from the inhomogeneity in the far field, and con-

tact defects, where group velocities point towards the inhomogeneity, but converge to zero as

|x| → ∞. In space dimensions less or equal than two, either sources or contact defects bifur-

cate, and we give expansions for wavenumbers and group velocities in terms of the strength

of the inhomogeneity. In space dimensions larger than two, one only finds contact defects for

small inhomogeneities. We prove our results for general reaction-diffusion systems in the case

of radially symmetric inhomogeneities. We also formally derive a viscous eikonal equation, for

which we prove existence and expansions in the general case, without radial symmetry.

In the remainder of this first section, we will set the scene and explain our main results. The

basic setup of oscillations, wave trains, and group velocities is given in 1.2, we define and

characterize coherent structures in 1.3, we give our main results in 1.4, and we conclude with

an outline of the remainder of this article.

1.2 Oscillations, wave trains, and modulations

As a prototype for non-equilibrium, spatially extended systems, we consider reaction-diffusion

systems

ut = D△u+ f(u), (1.1)

u ∈ R
N , D = diag (dj) > 0, f ∈ C

∞, in x ∈ R
n. We assume the existence of an asymptotically

stable, spatially homogeneous oscillation. The following list of assumptions roughly states

that the spectrum of the period map of (1.1), linearized at a periodic solution, is as stable

as possible: it is strictly contained in the unit circle up to a curve of spectrum touching the

unit circle at λ = 1 with a quadratic tangency. More precisely, we assume that there exists a
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solution u(t, x) = u∗(−ω∗t) = u∗(2π − ω∗t) to (1.1) and we define

Lku = −Dk2u+ ω∗uτ + f ′(u∗(τ))u, Lk : D(L) = H1
per(0, 2π) → L2(0, 2π). (1.2)

For stability, we assume that

(i) specLk ∩ {λ 6= 0mod iω∗, Reλ ≥ 0} = ∅;

(ii) specLk ∩ {Reλ ≥ 0} = ∅ for k 6= 0;

(iii) λ = 0 is algebraically simple as an eigenvalue of specL0;

(iv) the curve of eigenvalues λ(k) to Lk with λ(0) = 0 satisfies d = −λ′′(0) > 0.

Examples of such oscillations include all stable periodic solutions to the pure kinetics ut =

f(u) if the diffusion matrix is the identity (or close to the identity), an assumption that is

typically satisfied for reactions in solvent. It also includes the example of small amplitude

oscillations, whenever the Benjamin-Feir stability criterion on sideband instability is satisfied.

The chemical oscillations observed in the Belousov-Zhabotinsky reaction provide a prominent

experimental example.

Stable homogeneous oscillations are accompanied by a family of wave trains u∗(k ·x−ωt; |k|),
which solve

|k|2Du′′ + ωu′ + f(u) = 0. (1.3)

It is not difficult to see that there exists a smooth family of such 2π-periodic wave train

solutions u∗(·; |k|), with ω given as a function of the parameter k. We refer to this dependence

ω = Ω(k) as the nonlinear dispersion relation. Note that due to isotropy of our medium, Ω(k)

is merely a function of |k|. Also note that we slightly abuse notation, writing u∗(·) = u∗(·, 0)
for the spatially homogeneous oscillations. We define the group velocity of a wave train u∗(·; k)
via

cg(k) = ∇Ω(k). (1.4)

Again, by isotropy,

cg(k) = |cg(k)|
k

|k| .

We emphasize that the existence of wave trains already shows that homogeneous oscillations

are not isolated in phase space, and any robustness result needs to take the occurrence of

families of solutions into account.

More general solutions can be found by varying the wavenumber of the wave trains on slow

spatio-temporal scales. Inserting the Ansatz

u(t, x) = u∗(−ω∗t− Φ(T,X); εΦX ), X = εx, T = ε2t, (1.5)

into (1.1),we find at order ε2 a viscous eikonal equation

ΦT = d∆XΦ − 1

2
Ω′′(0)|ΦX |2; (1.6)

see for instance [3]. In particular, the nonlinear dispersion relation can be interpreted as a

nonlinear flux in a transport equation, and cg provides precisely the speed of characteristic

transport. The viscosity d is defined in item (iv) of our list of linear stability assumptions.
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1.3 Inhomogeneities and coherent structures

Our interest here is in the effect of small inhomogeneities in the medium on the oscillations.

We therefore consider

ut = D△u+ f(u) + εg(x, u), (1.7)

for ε small, with g ∈ C∞ smooth and localized, |g(x, u)| = O(|x|−2−β) for |x| → ∞ and some

β > 0.

One may be tempted to analyze this perturbation problem in a large ball of radius L and

Neumann boundary conditions, for instance, rather than in unbounded domains. In this case,

the Poincaré map possesses an asymptotically stable fixed point which can be readily seen to

persist for small values of ε. The validity of this regular perturbation argument in a bounded

domain, however, is restricted to ε = O(L−2) at best, since the trivial Floquet exponent is

isolated in the spectrum of the period map by a gap of this size only in a large domain.

Our goal in this article is to describe patterns resulting from the introduction of inhomo-

geneities using perturbation theory in the presence of essential spectrum in unbounded do-

mains. The idealization of the domain as the entire space has the additional advantage of

characterizing the resulting patterns by their asymptotic profile in the limit |x| → ∞.

We distinguish solutions to the inhomogeneous reaction-diffusion system in terms of their

transport properties at infinity. In one space-dimension, this task was carried out in a sys-

tematic fashion in [17]. We borrow some of the terminology from there and generalize to the

multi-dimensional case, next. In [17], we say a solution uc(x, t) to the (possibly inhomoge-

neous) reaction-diffusion system is a coherent structure, if uc is

• time-periodic: uc(x, t+ 2π
ωc

) = uc(x, t) for some ωc > 0;

• localized : there are k± such that |uc(x, t)− u∗(k±x− ωct−ϕ(x); k±)| → 0 for x→ ±∞,

uniformly in t, for some ϕ(x) with ϕ′(x) → 0.

Note that ”localized” does not refer to decay, but rather implies convergence as x → ±∞
towards wave trains with certain asymptotic wavenumbers k±. We can then classify coherent

structures according to the group velocity cg(k±) at these asymptotic wave trains. We say uc

is a

• source, if cg(k−) < 0 < cg(k+);

• sink, if cg(k−) > 0 > cg(k+);

• contact defect, if cg(k−) = 0 = cg(k+);

• transmission defect, if cg(k−) · cg(k+) > 0.

Note that the reflection symmetry of the equation and the uniqueness of the family of wave

trains solving (1.3) implies that Ω(k) = Ω(−k). The time periodicity of coherent structures

implies Ω(k+) = Ω(k−) = ωc, which typically, for example if Ω′′(0) 6= 0, implies that |k−| =
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Figure 1.2: Bifurcation diagram for small inhomogeneities in one-dimensional media. Sources exist for positive

ε with emitted wavenumbers k± ∼ ±ε. Contact defects exist for ε < 0. The sector between sources and contact

defects is filled with transmission defects; see Section 3.2.

|k+|. In [17, §6.5], we showed that for small inhomogeneities, there is a dichotomy between

the existence of sources and contact defects. A schematic bifurcation diagram is shown in

Figure 1.2. The analysis was outlined in [17] but we include a sketch in Section 3.2 here for

the convenience of the reader.

In case of radially symmetric defects, the classification is readily adapted. We call a radially

symmetric solution uc(r, t) a coherent structure, if uc is

• time-periodic: uc(t+ 2π
ωc
, r) = uc(t, r) for some ωc > 0;

• localized : there exists k such that |uc(r, t) − u∗(kr − ωct − ϕ(r); k)| → 0 for r → ∞,

uniformly in t, and ϕ′(r) → 0.

The classification in this radial, multi-dimensional case is somewhat more restrictive: we say

uc is a

• source, if cg(k) > 0;

• sink, if cg(k) < 0;

• contact defect, if cg(k) = 0.

1.4 Main results: radially symmetric inhomogeneities

Our main technical results describe coherent structures in spatially homogeneous oscillations

generated by radially symmetric inhomogeneities in reaction-diffusion systems. A formal per-

turbation theory for the periodic solution u∗ would isolate the time-derivative u′∗ as the kernel

in the fixed point equation for the linearized period map (1.1). Similarly, one finds a unique

bounded solution uad(−ω∗t) to the adjoint linearized kinetics, ut = −f ′(u∗)Tu. We assume

that uad is normalized such that
∫

(uad(τ), u′∗(τ))dτ = 1, where (·, ·) denotes the scalar product

in R
N . Since our perturbation is depending on x, we would like to use these eigenfunctions to

carry out a perturbation theory in L2(Rn) or BC0(Rn), say. If the linearized operator were

Fredholm, one would proceed with Lyapunov-Schmidt reduction: one evaluates the perturba-

tion on the kernel and projects it back onto the kernel by taking the scalar product with the
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kernel of the adjoint, and by then normalizing with the scalar product between kernel and

cokernel. This procedure fails at the first step: since u′∗ is not localized as a function of x,

the linearization is not Fredholm; see for example [19, Lemma 6.4]. One may still formally

continue to derive an expansion for a perturbed periodic solution by projecting the perturba-

tion, evaluated in the periodic solution, onto the kernel, using the adjoint kernel. However,

the fact that the space-time L2(S1×R
n)-scalar product between uad and u′∗ diverges, strongly

indicates that the formal results obtained in this fashion will not be valid.

Nevertheless, we define the Melnikov-type coefficient

M = (Vol(Sn−1))−1

∫

x

∫

τ
(uad(τ), g(|x|, u∗(τ))) dτdx =

∫ ∞

0

∫

τ
(uad(τ), g(r, u∗(τ))) dτrn−1dr,

(1.8)

which precisely represents the projection of the perturbation on the kernel. As we will see,

this coefficient is the essential ingredient to our main result. Our result is stated for radially

symmetric solutions, and we therefore may consider the space dimension as a continuous

parameter, n ≥ 1. The theorem describes coherent structures close to the homogeneous

oscillation, for ε small. Close here refers to existence of an appropriate δ0, small, and φ = φ(x)

such that

sup
x

|∇φ(x)| < δ0, sup
x

|u(t, x) − u∗(−ω∗t+ φ(x))|H1
t
< δ0, (1.9)

where H1
t refers to the H1-norm with respect to the variable t ∈ [0, 2π/ω∗].

Notation: We denote by O(y) and o(y) the Landau symbols for functions h which vanish at

y = 0 and which satisfy |h/y| ≤ C for some C > 0 and limy→0 |h/y| = 0, respectively. We

write oy(1) for functions which converge to zero as y → 0.

Theorem 1 Consider the reaction-diffusion system (1.7) with ε small in space dimension

n ≤ 2.

First assume that εMΩ′′(0) > 0. Then there exists a constant ĉ with ĉΩ′′(0) > 0 such that for

all ε > 0 sufficiently small, there exists a unique source with emitted wavenumber

k(ε) = ĉ|Mε| 1
2−n (1 + oε(1)), for n < 2,

k(ε) = ĉe−
2d

Ω′′Mε (1 + oε(1)), for n = 2. (1.10)

In particular, the group velocity in the far-field points outwards.

Next assume that εMΩ′′(0) < 0. Then there exists a constant ĉ with ĉΩ′′(0) < 0 such that for

all ε sufficiently small, there exists a unique contact defect, that is, the asymptotic wavenumber

is k = 0. At large but finite distances from the center, we have the wavenumber asymptotics

k =
1

r
(ĉ+ o1/r(1)), n < 2 and r ≫ log ε, k =

|εM |
|εM |r log r + r

(ĉ+ o1/r(1)), n = 2.

In particular, the group velocity converges to zero in the far field but it is pointing inwards at

large finite r. There also exists a family of sinks with wavenumbers close to 0 for all small ε.

There do not exist sources close to the homogeneous oscillations.
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Figure 1.3: Plotted are time snapshots of the inhibitor concentrations v(x) of (1.11). From left to right, a

spatially irregular initial condition (left) evolves into a homogeneous oscillation after time T=100 (second) in

a homogeneous medium. The next two pictures show how the same initial condition has evolved into a contact

defect, ε = −0.2, and a source, ε = 0.2. The last picture shows the radially symmetric contact defect, which

forms from a homogeneous initial condition, ε = −0.2. Simulations based on ezspiral, [5]. Click on the

snapshots to see a movie of the time evolution.

In space dimension n > 2, there exists a unique branch of contact defects and accompanying

sinks, with wavenumber asymptotics

k(r, ε) =
Mε

rn−1
(ĉ+ o1/r(1)), n > 2,

for an appropriate constant ĉ 6= 0. There do not exist sources regardless of the sign of

εMΩ′′(0).

Remark 1.1 Note that the phase φ(r) =
∫ r
0 k(s)ds diverges for contact defects for n ≤ 2, log-

arithmically in one space-dimension, and very weakly, ϕ ∼ log log r in two space-dimensions.

In higher space-dimensions, the phase converges. In particular, the target sources or target

sinks created by inhomogeneities in three space dimensions will have only a finite number of

rings, moving outward or inward, depending on the sign of εMΩ′′(0).

The proof of the theorem will occupy Section 2. Coherent structures solve a degenerate

elliptic PDE in x, t, with periodic boundary conditions in t and somewhat intricate boundary

conditions at |x| = ∞. The main difficulty stems from the boundary conditions at infinity,

which require the solution to be pointwise in x close to a homogeneous oscillation u∗(·+φ) for

some shift φ(x), where the function φ and its asymptotics as |x| → ∞ are to be determined

as part of the analysis.

We illustrate the main result with numerical simulations. Figure 1.3 shows snapshots of the

dynamics of an oscillatory system in the presence of a localized inhomogeneity. The color

coding reflects values of the v-component in Barkley’s FitzHugh-Nagumo model

ut = ∆u+
1

µ
u(1 − u)

(

u− v + b

a

)

, vt = ∆v + u− v +
ε

1 + |x/3|2 (1.11)

with parameters a = 0.3, b = −0.45, µ = 0.095 on Ω = {|xj | ≤ 90}. The convergence to the

final state is much faster in the case of a source.

1.5 Outline

The remainder of this article is organized as follows. We introduce spatial dynamics and prove

Theorem 1 in Section 2. We rely on an ill-posed dynamical systems formulation, inspired by
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[8, 20]. The main difficulty is the analysis of an ordinary differential equation in the far-field,

which possesses a highly degenerate equilibrium. We unfold the degeneracy using geomet-

ric blow-up methods; see [18, 11] for a recent account. We then discuss coherent structures

which are not necessarily radially symmetric. We therefore derive a viscous eikonal equation

that approximates the reaction-diffusion dynamics and discuss shapes of coherent structures

in this approximation; Section 3. This discussion largely relies on the Hopf-Cole transforma-

tion, which links coherent structures in the eikonal equation to eigenfunctions of Schrödinger

operators. We show that coherent structures still are approximately radial in the far field. We

conclude Section 3.3 with a discussion of moving inhomogeneities. Main results here again

rely on the Hopf-Cole transformation. Coherent structures show more complicated, non-radial

patterns such as sonic cones and diffusive profiles. We conclude with a discussion in Section

4, including a summary of results, discussion of topological and quantitative classifications of

defects, and a note on asymptotic stability.

The results on reaction-diffusion systems, Theorem 1, are new. Some of the results on modu-

lation equations in Section 3 appear to be folklore. We refer to [22] and the references therein

for related results and an overview of the experiments. We included this a discussion of in-

homogeneities in the eikonal approximation since it allows for a comparison with our main

technical result, Theorem 1, and for extensions to non-symmetric settings.

Acknowledgments A. Scheel was partially supported by the NSF through grants DMS-0203301 and

DMS-0504271. A. Scheel also acknowledges discussions with D. Aronson and O. Zeitouni on properties

of Schrödinger operators.

2 Radial dynamics

In this section, we prove Theorem 1. Coherent structures solve

−ωuτ = Durr +
n− 1

r
ur + f(u) + εg(r, u), τ ∈ R mod2πZ, r ≥ 0,

which we can (formally) rewrite as an abstract first-order differential equation in the radius r,

ur = v

vr = −n− 1

r
v −D−1 (ω∂τu+ f(u) + εg(r, u)) . (2.1)

We consider (2.1) on the Hilbert spaceX = H
1/2
per (0, 2π)×L2

per(0, 2π). The unbounded principal

part of the right-hand side of (2.1) defines a closed operator with domain of definition X1 =

H1
per(0, 2π) × H

1/2
per (0, 2π). We say (u, v)(r, τ) is a solution to (2.1) on J ⊂ R+ if (u, v)(r, ·)

is in C0(J,X) ∩ C1(Int(J),X) ∩ C0(Int(J),X1). Note that the domain reflects the expected

parabolic regularity with two derivatives in x or one derivative in t; see [8, 20], and [15, Lemma

3.1] for a simple computation justifying this choice of norms.

Note that (2.1) is invariant under the time shift Tφ : (u, v)(r, ·) 7→ (u, v)(r, · + φ), which

therefore maps solutions to solutions.
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The differential equation (2.1) is ill-posed as a dynamical system as its principal part amounts

to solving the heat equation as an initial-values problem ’sideways’, in r.

Our strategy for the proof now consists of several steps. We construct manifolds of bounded

solutions close to (u∗(· + ϕ), 0) for r ∈ [0, R], W cu
− , Step 1, and for r ∈ [R,∞], W cs

+ , Step

2. We then show that these two manifolds intersect transversely along (u∗(· + ϕ), 0), Step 3.

In Step 4, we construct a two-dimensional manifold W c
+ that contains this intersection, and

we compute the vector field on this manifold in Step 5. Steps 6 and 7 are concerned with

an analysis of this vector field, in particular tracking the points on W c
+ that yield contact

defects, sources, or sinks in r ≥ R. The analysis involves a geometric blow-up construction,

Step 6, and a Dulac map analysis, Step 7. In Step 8, we locate those points in W c
+ which yield

bounded solutions on [0, R] to leading order in ε. In the final Step 9, we match these bounded

solutions on [0, R] with conditions for sources, sinks, and contact defects inside of W c
+.

The general strategy is reminiscent of [20], where radially symmetric and time-periodic pat-

terns have been studied close to a time- and space-independent equilibrium of the reaction-

diffusion system. We will encounter some additional difficulties in the far field which are

similar to the difficulties arising in the study of one-dimensional contact defects; see [17, 18].

Step 1: Construction of W cu
−

Proposition 2.1 For all R > 0, there exists a smooth manifold

W cu
− =

⋃

0<r≤R

W cu
− (r) × {r} ⊂ X × R+,

such that W cu
− (r) contains precisely all functions (u(r), v(r)) which are boundary values to

bounded solutions of (2.1) on (0, r], close to (u∗(·+φ), 0) in X for some φ ∈ R. The manifold

is invariant under the action of the temporal shifts Tϕ on X, and depends smoothly on ω and ε

Moreover, the map from solutions to boundary values is a smooth diffeomorphism, equivariant

with respect to Tϕ.

Proof. The proof is the same as in [20, Prop. 4.7].

Step 2: Construction of W cs
+

We now turn to a description of the bounded solutions at r = ∞. We therefore introduce

α = 1/r and rewrite (2.1) as

ur = v

vr = −(n− 1)αv −D−1 (ω∂τu+ f(u) + εg(1/α, u))

αr = −α2. (2.2)

Note that the decay assumption on g implies that g = O(α2+β) ∈ C2 for α ≥ 0. In α = 0,

there is a circle of equilibria u = u∗(· + ϕ), v = 0. We are interested in solutions that stay in

a vicinity of this circle for all α small. We therefore consider the linearization in one of these
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equilibria

ur = v

vr = −D−1
(

ω∗∂τu+ f ′(u∗)
)

αr = 0. (2.3)

This system can be written in the short form u′′ = −D−1L0u, so that the spectrum of the right-

hand side operator in (2.3) is given by the square root of the spectrum of −D−1L0 (and the

zero eigenvalue from the equation for α). In particular, there is no purely imaginary spectrum

outside of zero since D−1L0u = γ2u for some γ 6= 0 violates our stability assumption (ii). All

other eigenvalues come in pairs (ν,−ν) by reversibility. The zero eigenvalue is geometrically

simple, with kernel spanned by (u′∗, 0), again by the stability assumption. Then (0, u′∗) provides

an obvious generalized eigenfunction. The quadratic expansion of the dispersion relation

guarantees that the algebraic multiplicity is not larger than two; see [20].

We therefore have a 2+1-dimensional center eigenspace Ec consisting of the generalized kernel,

and infinite-dimensional stable and unstable eigenspaces Es/u

Proposition 2.2 (W cs
+ ) There exists a smooth center-stable manifold to the circle of equilib-

ria (u∗(· + ϕ), 0) at α = 0, tangent to Ec ⊕ Es. Moreover, there is a local smooth semi-flow

Φr on W cs
+ , and all solutions that stay in a neighborhood of the circle of equilibria for all

positive r ≥ R are trajectories to this semi-flow on W cs
+ . Finally, the center-stable manifold

is invariant and the flow is equivariant with respect to the action of the symmetry group Tϕ.

Proof. The proof is analogous to [17, Thm 3] and will be omitted here.

Step 3: Intersecting W cu
− and W cs

+

By construction, the circle of equilibria at (u∗(·+ϕ), 0) belongs to the intersection of W cs
+ and

W cu
− .

Proposition 2.3 The manifolds W cs
+ and W cu

− intersect transversely along (u∗(· + ϕ), 0) in

X at any fixed, finite r ∈ (0,∞). The intersection W c is a circle, smoothly depending on ω,

ε, and r.

Proof. We show that tangent spaces intersect transversely along a one-dimensional subspace.

Since the intersection necessarily contains the circle (u∗(τ+ϕ), 0) at ε = 0, ω = ω∗, this suffices

to prove the theorem via Lyapunov-Schmidt reduction.

Transversality is encoded in the immersion map

ι : T∗W
cu
− (r) × T∗W

cs
+ (r) → X, (ucu

− (r),ucs
+(r)) 7→ ucu

− (r) − ucs
+(r),

where u
cu/cs
± = (u, v) solve the linearized equation

ur = v

vr = −n− 1

r
v −D−1L0u. (2.4)

11



Transverse intersection along a one-dimensional manifold is equivalent to ι being Fredholm of

index one with minimal, one-dimensional kernel. From [20, 16], we know that ι is Fredholm

and the Fredholm index is given by the relative Morse index at +∞. In order to compute the

relative Morse index, we compare the equation to the linearized equation

ur = v

vr = −n− 1

r
v −D−1L0u+ λu,

with spectral parameter λ. For λ > 0, this equation possesses an exponential dichotomy, the

immersion map ι is Fredholm of index 0. In the limit λ = 0, there is a double center eigen-

value, which we incorporated in the stable direction T∗W
cs
+ . For small positive λ, these two

eigenvalues split in opposite directions. In other words, T∗W
cs
+ is enlarged by one dimension

compared to the hyperbolic, Fredholm index 0 situation at λ > 0. A bordering lemma then

shows that ι is Fredholm of index 1. It remains to show that the intersection is transverse,

that is, that the kernel of ι is minimal, one-dimensional.

We can block-diagonalize (2.4) by splitting off the one-dimensional kernel of D−1L0 with the

associated spectral projection. In this center subspace, we find the unique bounded solution

u = u′∗(τ), v = 0. Any linearly independent solution will exhibit a singularity at r = 0:

indeed, solutions solve u′′ + n−1
r u′ = 0, with singularity r2−n, n 6= 2, and log r, n = 2, for any

non-constant solution. In the complement, any solution in the intersection would need to be

exponentially localized at infinity. Any element in the kernel of ι in this hyperbolic component

would therefore yield an exponentially localized solution to the system D∆u + f ′(u∗(τ))u +

ω∗∂τu = 0. In particular, the Fourier transform û(k, τ) of this exponentially localized solution

would be smooth in Fourier space and contribute to the kernel of Lk. Since all Lk with k 6= 0

are invertible by assumption, this implies û ≡ 0, and concludes the proof.

Step 4: Extending the intersection — W c
+

The intersection W c typically crosses the boundary of W cs
+ for r → ∞, that is, solutions do

not stay close to u∗ for r → ∞ for arbitrary parameters ε and ω. The construction of the

center-stable manifold W cs
+ incorporates all solutions with mild growth. In order to single out

the solutions that actually stay bounded as r → ∞, we will analyze the flow in the center

direction at r = ∞ more carefully. We therefore construct a center manifold W c
+ ⊂ W cs

+ ,

which is tangent to Ec at r = ∞, and contains W c.

Proposition 2.4 There exists a 2 + 1-dimensional smooth center-manifold near the circle of

equilibria (u(· + ϕ), 0) at α = 0, which is tangent to Ec, and contains all solutions that are

bounded on (0,∞),

W c ⊂W c
+ ⊂W cs

+ ,

for sufficiently large r.

Proof. The proof is analogous to [20, Thms 3.7,4.8].
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Step 5: The vector field on W c
+

Invariance of W c
+ together with the condition on tangency allows us to compute the Taylor

expansion of the reduced vector field. We denote eigenvectors and adjoint eigenvectors in the

generalized kernel by

e0 = (u′∗, 0), e1 = (0, u′∗), e∗0 = (Duad, 0), e∗1 = (0,Duad),

where L∗
0uad = 0, and we normalize (Duad, u

′
∗) = 1, so that (ei, e

∗
j ) = δij . We introduce

coordinates on the center manifold by parameterizing the tangent bundle of the circle of

equilibria with θ, the symmetry action, and κ:

(u, v) = (u′∗(· + θ), 0) + κe1(· + θ) + ψ[κ](· + θ),

where ψ denotes the (symmetry-invariant) graph of the center manifold, (e∗j (·), ψ(·))) = 0. The

equation on the center manifold is independent of θ, by symmetry, and it therefore suffices to

track the κ- and α = 1/r-dependence of the vector field. A straightforward expansion shows

that we necessarily recover the phase diffusion equation (1.6) at second order:

d(κ′+(n−1)ακ) = (ω−ω∗)+
1

2
Ω′′(0)κ2+o(|κ|2+|α|2)+O(|ω−ω∗|(|κ|2|+|α|2)), α′ = −α2.

(2.5)

The ε-dependent terms only contribute to the higher-order terms because of the rapid decay

of g.

Step 6: Geometric blow-up

The vector field on W c
+ possesses a doubly degenerate equilibrium at α = κ = 0: the lin-

earization at this equilibrium vanishes, leading order terms are quadratic in α and κ. This

degeneracy is unfolded by the parameter ω. Varying ω, the equilibrium undergoes a saddle-

node bifurcation inside α = 0. It turns out that we are interested in connections to the

unstable equilibrium in this saddle-node bifurcation. In order to track its stable manifold, we

invoke a desingularization method, the geometric blow-up [4, 11]. In fact, the system on the

center manifold is similar to the system studied in [18], to which we will refer for more details

on the construction. The similarity to the eigenvalue problem for the n-dimensional Laplacian

in [18] comes as no surprise as the formal eikonal long-wavelength approximation is conjugate

to the linear heat equation via the Hopf-Cole transformation.

We briefly summarize the blow-up construction from [18]. To leading order, the system (2.5)

is homogeneous, quadratic, with variables (κ, α, δ) ∈ R
3, once we set ω − ω∗ = ±dδ2. We

introduce polar coordinates R+ × S2 7→ R
3, thus blowing up the origin into a 2-sphere, and

then introduce local coordinates corresponding to stereographic projections. More explicitly,

these coordinates are

α1 = α, κ1 = κ/α, δ1 = δ/α;

α2 = α/δ, κ2 = κ/δ, δ2 = δ.

In the new coordinates, after rescaling time with the Euler multipliers α1 and δ2, respectively,

the equations read

κ′1 = −(n− 2)κ1 +
Ω′′

2d
κ2

1 ± δ21 + oα1(1)

13



α′
1 = −α1

δ′1 = δ1

and

κ′2 = −(n− 1)α2κ2 +
Ω′′

2d
κ2

2 ± 1 + oδ2(1)

α′
2 = −α2

2

δ′2 = 0.

In the following, we will assume Ω′′ > 0 and choose the ’-’-sign in the two equations. The

other case is completely analogous. We depicted the phase portrait in this rescaled time in

Figure 2.1. Note that with the convention Ω′′ > 0, the equilibria with κ > 0 correspond to

asymptotically positive, outward pointing group velocity and connections to those equilibria

are the sources we are seeking.

Step 7: The Dulac map

The stable manifold of the family of saddles in the 2-chart can be continued into the 1-chart

until it enters the section α = 1/R. Its location in this section can be computed as follows.

The stable manifold enters a neighborhood of the singular equilibrium κ1 = δ1 = α1 = 0

along the weak unstable (or center) direction from the negative κ direction. It will leave the

neighborhood of this equilibrium along the stable α-direction. We start by computing the

transition map for the approximation

κ′1 =
Ω′′

2d
κ2

1, α′
1 = −α, δ′1 = δ1, n = 2, or

κ′1 = −(n− 2)κ1, α′
1 = −α, δ′1 = δ1, n < 2.

In the section κ1 = m, m > 0 small, the distance of the stable manifold to the singular sphere

can be expanded as αin = cαδ + O(δ2). We want to compute the location of this manifold

after passage near the singular equilibrium, when it hits the section α1 = m. Since the flow

in the direction of α1 is linear, we find the time of flight as T = log δ+ O(1), with error terms

smooth in δ. In order to compute the κ1-coordinate after time T , we need to compute the

flow ΦT in the κ-direction, with initial condition κ1 = m. We find

ΦT (m) = e−(n−2)Tm, for n < 2

ΦT (m) =
1

1
m − Ω′′

2d T
, for n = 2,

which gives

κ1 = ΦT (m) = δ2−nm+ O(δ2(2−n)), for n < 2

κ1 = ΦT (m) = − 2d

Ω′′ log δ
+ O

(

1

(log δ)2

)

, for n = 2. (2.6)

In order to estimate the influence of the error terms, we set κ1 = κ∗1 + κ̂1, where κ∗1 is the

above approximation, with the exact initial conditions, κ̂1(t = T ) = 0. A straightforward

fixed point argument then shows that

κ̂1(t) = O(t−2), for n = 2, κ̂1(t) = O(e−(2−n+β)|t|), for n < 2.
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Figure 2.1: The connecting orbits between r = 0 and the 1-chart and from the 1-chart to the 2-chart, for

n > 2, top figure, n = 2, middle figure, and n < 2, bottom figure. The entering trajectory in δ1 = 0, α1 > 0

are obtained from matching with the region r ≤ R. We set Ω′′/2d = 1 in all cases.
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This shows that the expansions (2.6) are valid for the full system incorporating the error

terms, as well.

Step 8: The Melnikov integral

In order to conclude the construction, we have to match the stable manifold of the asymptotic

wave train with the shooting manifold W cu
− . At ε = 0, W cu

− intersects W cs
+ transversely along

W c ⊂W c
+. It is therefore sufficient to compute the location of W cu

− ∩W c
+ and then propagate

the solution to α = 0. To leading order in δ, the location of W c remains unchanged since

δ enters the equation only at quadratic order. To leading order in ε, the location can be

computed by solving the variational problem following the standard procedure in heteroclinic

bifurcations as follows. We denote by Φ(ρ, σ) the evolution operator to the linearized equation

uρ = eρv

vρ = −(n− 1)v − eρD−1L0u, (2.7)

which can be readily constructed using the exponential dichotomies at r = ∞ and r ∼ 0.

Similarly, we can define the adjoint operator Φ∗(ρ, σ) as solution to

uρ = eρL∗
0D

−1v

vρ = −eρu+ (n− 1)v. (2.8)

We are interested in the location ∂εκ−(R), the derivative of the manifold W c in the direction

of e1, which is found by taking the scalar product of the perturbation, integrated along the

linearized flow, with e∗1,

∂εκ−(R) = 〈e∗1,
∫ eR

−∞
Φ(eR, σ)eσ(0,−D−1∂εg(e

σ , u∗; 0))dσ〉

= −
∫ eR

−∞
〈Φ∗(eR, σ)e∗1, (0,D

−1∂εg(e
σ , u∗; 0))e

σ〉dσ.

An explicit computation shows that

Φ∗(eR, σ)e∗1 = (0, e(n−1)σDuad),

which then gives

∂εκ−(R) = −
∫ eR

−∞
〈Duad,D

−1∂εg〉enσdσ

= −
∫ R

0
〈uad, ∂εg〉rn−1dr

= −(Vol (Sn−1))−1

∫

Rn

∫ 2π

0
(uad(τ), ∂εg(|x|, u∗(τ); 0))dτdx + o1/R(1).

Step 9: Matching core and far field

We first consider the case of space dimension n > 2. At δ = 0, the heteroclinic given by

u∗(τ) connects to a sink in the singular blow-up chart. The connection is therefore robust
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under ε-perturbations, yielding a robust family of contact defects, asymptotic wavenumber

zero. Unfolding in δ, a simple transitivity lemma shows that orbits pass near the equilibrium

κ1 = 0 in the singular chart and then connect to the sink in the 2-chart, corresponding to

sinks with asymptotically negative group velocity in the reaction-diffusion system. We will

derive expansions for the wavenumber below, which will then prove Theorem 1 in the case

n > 2.

In the case n ≤ 2, the heteroclinic connects to a saddle and the above Melnikov analysis shows

that turning on ε actually breaks the connection. For ∂εκ−(R) > 0, we find a connection to

the sink κ1 = 0 in the one-chart, thus yielding contact defects. Again, nonzero values of

δ yield connections to the sink in the 2-chart and thereby accompanying sinks in the full

reaction-diffusion system. In the case ∂εκ−(R) < 0, we find an intersection with the stable

manifold of the saddle in the 2-chart, whose location at α = 1/R is κ = Mε + O(ε2). We

match this expansion with the expansion (2.6) from the singular chart and solve for δ2−n or

e−1/δ , respectively with the implicit function theorem. We find the expansion

δ = c∗|Mε|1/(2−n)(1 + oε(1)), for n < 2,

δ = c∗e
− 2d

Ω′′Mε (1 + oε(1)), for n = 2, (2.9)

for some constants c∗ with c∗Ω
′′ > 0. Next, we replace δ by k, using the relations ω−ω∗ = δ2

and ω − ω∗ = Ω′′k2/2 + O(k4), so that

k = ĉ(Mε)1/(2−n)(1 + oε(1)), for n < 2,

k = ĉe−
2d

Ω′′Mε (1 + oε(1)), for n = 2. (2.10)

This proves the existence of sources in the case n ≤ 2 and the expansion for the asymptotic

wavenumber. Again, there are also accompanying sinks with asymptotic wavenumbers |k| >
|ksource(ε)|. This proves existence and asymptotics for sources in Theorem 1 in the case n ≤ 2.

The existence and asymptotics for contact defects, κ = 0, are simpler. The connection is

robust in the 1-chart, with asymptotics

κ1 → 2d(2 − n)

Ω′′
, n < 2, κ1 ∼ 1

log r + (εM)−1
, n = 2, and κ1 ∼ r2−n, n > 2,

which leads to wavenumber asymptotics

k ∼ 2d(2 − n)

Ω′′r
, n < 2, k ∼ εM

εMr log r + r
, n = 2, and k ∼Mεr1−n, n > 2.

Remark 2.5 The analysis presented here simplifies considerably when studying systems with a

gauge symmetry, such as λ−ω systems or Ginzburg-Landau equations. The gauge symmetry in

these systems is represented as an action T of the circle group φ ∈ S1, so that u is a solution if

and only if Tφu is. The simplest periodic solutions then are equilibria with respect to this action,

u(t, x) = Tkx−ω(k)tu∗(k). Coherent structures can be found as solutions of the form u(t, x) =

T−ωtu∗(x), so that u∗ satisfies a (time-independent) elliptic equation with a free parameter ω.

In the radially symmetric case, this reduces the problem to an ordinary differential equation;

see [10] for an analysis of such a problem. For non-radially symmetric inhomogeneities, the

resulting time-independent PDE problem is similar to the radially symmetric case, without

gauge symmetry, that we analyzed here.
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3 The eikonal approximation

In this section, we derive the viscous eikonal equation formally from the reaction-diffusion

system and analyze profiles of coherent structures in this approximation. We find results

similar to the results in Theorem 1, and we are able to discuss non-radially symmetric inho-

mogeneities, and the effect of moving inhomogeneities. The results differ from the results in the

previous section since they assume a particular spatial scaling of the inhomogeneity for small

amplitude ε. This special scaling is consistent with the modulation Ansatz, albeit not typical

in a given system. We also emphasize that this formal approach yields flat e−1/ε-expansions,

while the approximation itself is only correct to order ε2. It is therefore not clear at all, why

these formal results give similar asymptotics as the ones that we rigorously obtained in the

previous section.

3.1 Stationary non-symmetric inhomogeneities

We consider

ut = D△u+ f(u) + ε2g(εx, u), (3.1)

with ε small. We follow the derivation in [3, §4.3], where the computations are shown for a

wave train with nonzero spatial wave number. We substitute the Ansatz (1.5)

u(t, x) = u∗(Φ(T,X) − ωt; ε∇XΦ(T,X)) + ε2u1(−ωt, T,X); X = εx, T = ε2t, (3.2)

into (1.7) and expand in powers of ε. At order ε2, we find after a short computation

ΦTu
′
∗ − ∆XΦDu′∗ − |∇XΦ|2Du′′∗ − g(X,u∗) = L0u1(x). (3.3)

Solvability requires that the left side of (3.3) belongs to the range of L0. We denote by uad

the kernel of the L2-adjoint of L0 with normalization (uad, u
′
∗) = 1. After some calculations,

this solvability condition turns out to be equivalent to

ΦT = d∆XΦ − 1

2
Ω′′|∇XΦ|2 + Ḡ(X), (3.4)

where

Ḡ(X) =

∫ 2π

0
(g(X,u∗(ζ)), uad(ζ)) dζ;

see also [3] for a similar expansion. The Hopf-Cole transformation

A = eaΦ, a = −2d/Ω′′,

linearizes the eikonal equation so that we find

AT = d∆A+ Ḡ(X)A. (3.5)

Coherent structures are solutions with ΦT = −ω, which is equivalent to AT = −ωA. They

therefore correspond to eigenfunctions of the Schrödinger eigenvalue problem

− ωA = d∆A+ Ḡ(X)A. (3.6)
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For n = 1, 2, expansions on the leading eigenvalue have been derived in many contexts, going

back to Landau [12] and Simon [21]. For instance, for d = 1, [21, Thm 3.4] states that

ω ∼ e
− 4π

R

Ḡ , (3.7)

for small
∫

G, which agrees with our expansion in Theorem 1. To see this, replace ω = Ω′′k2

in (3.7), solve for k, and recall that M =
∫

G/Vol(S1) =
∫

G/2π.

From a phenomenological viewpoint, we are most interested in the asymptotics of the wave

number in the far field, that is, in ∇Φ(X) as X → ∞. In the Schrödinger formulation, this

amounts to computing decay and growth properties of the eigenfunction in the far field. For

instance, assume that an eigenfunction A possesses exponential asymptotics e−γ|x| for some

γ ∈ R. We can then infer phase asymptotics for Φ = 1
a logA,

Φ ∼ 1

2d
Ω′′γ|x|,

hence sign k = sign Ω′′γ. In particular, exponential decay generates outward group velocities

and exponential growth inward group velocities. The exponential localization of eigenfunctions

outside of the essential spectrum yields sources in the eikonal equation.

For n > 2 the nonexistence of eigenvalues (point spectrum) for small potential follows readily

from Hardy’s inequality [13], which states that for any f , with f ′ integrable,

∫ ∞

0
|f(x)/x|pdx <

(

p

p− 1

)p ∫ ∞

0
|f ′(x)|pdx,

Indeed, for n = 3, say, and Ḡ radial, the symmetric form associated with the elliptic operator

is positive whenever Ḡ < d
4r2 :

∫

R3

(d|∇A|2 − Ḡ(x)A2)|x|2dx ≥ 4πd

∫ ∞

0
(r2A2

r −
1

4
A2)dr,

and by Hardy’s inequality
∫ ∞

0
r2A2

rdr =

∫ ∞

0

(

(rA)2r −A2 − (A2)′r
)

dr =

∫ ∞

0
(rA)2rdr ≥

∫ ∞

0

1

4
A2dr. (3.8)

Note however that in the scaling used to derive the eikonal approximation, Ḡ need not be

small. In particular, potentials which are small in amplitude but long-range in the sense

imposed by the scaling can create sources.

The following result appears to be standard, but we were unable to locate a good reference

and therefore include a proof in the appendix.

Proposition 3.1 Consider the eigenvalue problem (3.6) in R
2 with d = 1 and smooth poten-

tial Ḡ with

|Ḡ(r, ϕ))| + |∂rḠ(r, ϕ)| + |∂ϕḠ(r, ϕ))| = O(r−1−β)

in polar coordinates, as r = |x| → ∞, for some β > 0. Let u ∈ C2 be a positive eigenfunction

to an eigenvalue ω = −γ2 < 0.
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We then have the following renormalized asymptotics with Ã(r, ϕ) =
√
reγrA(r, ϕ):

|Ã(r, ·) − Ã∞(·)|H1 → 0,

for some Ã∞(·) ∈ H1
per(0, 2π), Ã∞ 6= 0.

There is a tremendous amount of literature on decay properties of solutions to elliptic equation;

see for instance the early references [1] for upper bounds, and [2, Thm 3.2], for lower bounds.

The decay properties for Ḡ needed here are weaker than the decay properties in the analysis

of small potentials. For instance, long-range potentials, Ḡ ∼ |x|−1−β, β < 1, create infinitely

many bound states, while the short range potentials from Theorem 1 create a unique bound

state at small amplitude. The proposition states that the long range of the potential does not

influence the decay rate of the eigenfunction at leading order.

We expect that contact defects are highly non-unique in the non-radially symmetric case:

we expect an infinite-dimensional manifold, corresponding to different asymptotic azimuthal

profiles. Asymptotics for this situation do not appear to be well understood.

From Proposition 3.1, we can conclude that level lines of the phase are corrections to increas-

ingly large circles. Rings sent out by the sources do not converge to circles, the deviation will

remain O(1). Indeed, in the far field, level sets of the phase Φ = logA = C solve

log Ã∞(ϕ) + γr +
1

2
log r = C,

so that with the formal inverse h(γr + 1
2 log r) = r, we have the asymptotic parametrization

r = h(C − log Ã∞(ϕ)) of level sets. Since h′ ∼ 1/γ for large r, r will not be constant on level

sets if Ã∞ is not constant.

Note however that the wavenumber does converge to kx/|x|, since azimuthal gradients decay

as 1/|x|.

3.2 Transmission, sinks, and contacts

Deviating from our primary focus on higher-dimensional coherent structures, we recall results

on transmission defects in one-dimensional media from [17], preparing for the analysis of mov-

ing inhomogeneities in the next section. Our interest is in the response of the inhomogeneity

to incoming wave trains. A fairly complete answer can be provided in one space dimension.

We start with the viscous eikonal equation, d = 1, Ω′′ = 1 and a localized inhomogeneity:

− ω = Φxx − 1

2
Φ2

x + εG(x), (3.9)

which we write as a non-autonomous first-order ODE

Φx = k, kx = −ω +
1

2
k2 − εG(x).

Note that the equation for k is independent of Φ and can therefore be solved independently,

kx = −ω +
1

2
k2 − εG(x). (3.10)
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At x = ±∞, the inhomogeneity disappears, and we find

kx = −ω +
1

2
k2.

This equation possesses equilibria k = ±
√

2ω for ω > 0 corresponding to the planar wave

trains, equilibria k = 0 for ω = 0 corresponding to the homogeneous oscillations, and no

bounded solutions for ω < 0. As a consequence, bounded solutions to (3.10) exist only for

ω ≥ 0. As x → +∞, there exists a unique solution which converges to k =
√

2ω. All other

bounded solutions converge to k = −
√

2ω.

Let W s
+ = (−∞, k∗+) be the set of initial values to (3.10) at x = 0 which converge to k = −

√
2ω

for x → ∞, the slice of the stable manifold at x = 0. The solution with k(x = 0) = k∗+ then

converges to k =
√

2ω. Analogously, we define W u
− = (k∗−,+∞) as the set of initial values that

converge to k =
√

2ω for x → −∞, so that k(x = 0) = k∗− is the unique initial value to the

solution which converges to k = −
√

2ω for x = −∞. We set γ =
√

2ω ≥ 0. It is not difficult

to see that

k∗+ = γ − ε

∫ ∞

0
G+ O(ε2 + γ2), k∗− = −γ + ε

∫ 0

−∞
G+ O(ε2 + γ2). (3.11)

We find bounded solutions, whenever k∗+ − k∗− ≥ 0, that is, when

2γ ≥ ε

∫ ∞

−∞
G+ O(ε2). (3.12)

If ε
∫

G < 0, bounded solutions exist for all values of γ. If ε
∫

G > 0, bounded solutions only

exist for γ ≥ ε
∫

G/2. The phase portrait in extended phase space is as depicted in Figure 3.1.

The construction of the bifurcation diagram can be adapted to the case where G(x) = o(1/x),

when the decay of G exceeds the decay of k, using a variation-of-constant formula. From the

heteroclinic bifurcation picture in Figure 3.1, one can readily infer the bifurcation diagram in

Figure 1.2.

We close with a short phenomenological interpretation of these findings. For ε < 0, incoming

waves with wavenumber k∞ are transmitted across the inhomogeneity with a phase jump

−ε
∫

G/k. For ε > 0, the incoming waves are transmitted as long as their wavenumber is large

enough, so that waves emitted by the source are pushed towards the inhomogeneity. When the

wavenumber of the incoming waves is less or equal to the emitted wavenumber, an interface

between the incoming waves and the waves emitted by the source is pushed away from the

inhomogeneity so that the final state is the pure source. The latter scenario is the building

block of the situation in two space-dimensions which we will address next in Section 3.3.

An interesting question arises when trying to understand this bifurcation from a path fol-

lowing point of view. Sources, as codimension-one heteroclinic orbits are robust and can be

followed in parameters such as ε. While global path following results for heteroclinic orbits

are not available, one can still try to continue the source ad hoc through ε = 0. The natural

continuation becomes apparent in the dual picture of eigenvalues of Schrödinger operators:

the eigenvalue corresponding to the source disappears in the essential spectrum. It can how-

ever be continued as a zero of the analytic continuation of the pointwise resolvent, or the
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Figure 3.1: Schematic picture of the existence of sources and sinks in the eikonal approximation for small

potentials. Phase portraits are in the phase space of wavenumber, vertical, space, horizontal and compactified.

Phase is irrelevant and suppressed. In the first picture, we find contact defects, in the second, sources, and in

the last picture sinks and transmission defects, constructed from sources and sinks.
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scattering function for ε < 0. It then corresponds to a resonance pole, exhibiting pure expo-

nential growth. In the ODE bifurcation picture for the eikonal equation, these resonance poles

correspond to a heteroclinic connection between strong unstable and strong stable manifolds.

The corresponding sinks separate two different kinds of sinks. For the first, regular type,

with large enough incoming wavenumber, the wavenumber decreases monotonically along the

sink. Sending in smaller wavenumbers, the profile changes to a non-monotone profile, where

wavenumbers (and therefore group velocities) increase in magnitude while approaching the

sink, before they decrease close to the sink and change sign. The maximal wavenumber at-

tained by those sinks is the one selected by the resonance pole. In this sense, even though

the source disappeared, the ghost of the source still selects a wavenumber in an intermediate

range!

3.3 Moving sources – conical and diffusive shock profiles

We now consider the case of a moving inhomogeneity, or, equivalently, the system

ut = D△u+ cεux1 + f(u) + ε2g(εx, u), (3.13)

where x = (x1, y) ∈ R × R
n−1. With (1.5), we find the eikonal equation in a comoving frame

ΦT = d∆XΦ + cΦX1 −
1

2
Ω′′|∇XΦ|2 + Ḡ(X), (3.14)

with X = (X1, Y ) = ε(x1, y), and T = ε2t. The transformations

Ψ = Φ + bx1, b = c/Ω′′, and A = eaΨ, a = −2d/Ω′′, (3.15)

give

AT = d∆A− c2

2Ω′′
A+ Ḡ(X)A. (3.16)

Coherent structures again correspond to eigenfunctions of the self-adjoint Schrödinger eigen-

value problem

− ωA = d∆A− c2

2Ω′′
A+ Ḡ(X)A. (3.17)

If we adjust the frequency for the Doppler shift ω̂ := ω− c2

2Ω′′ , we recover the eigenvalue problem

from the previous section. In particular, Proposition 3.1 gives wavenumber asymptotics

∇Φ = γ
x

|x| − be1 + O(
1

|x| ),

where γ =
√
−ω̂, b was defined in (3.15), and e1 ∈ R

n denotes the unit vector in the direction

of x1. Level lines are radial where the phase gradient is perpendicular to x, that is, when

γ− b(e1, x/|x|) = 0. This gives the typical sonic cone with opening angle ϑ = arccos(γ/b); see

also the numerical simulations in Figure 3.2.

A more typical scenario would be a source moving with speed c = O(1),

ut = D△u+ cux1 + f(u) + ε2g(ε2x1, εy, u). (3.18)
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We insert the Ansatz

u(t, x) = u∗(Φ(T,X) − ωt; ε∇XΦ(T,X)) + ε2u1(−ωt, T,X); X = (ε2x1, εy), T = ε2t,

(3.19)

and find

ΦT = d∆Y Φ + cΦX1 −
1

2
Ω′′|∇Y Φ|2 + Ḡ(X1, Y ). (3.20)

Transforming

A = eaΦ, a = −2d/Ω′′,

linearizes the equation which results in

AT = d∆YA+ cAX1 + Ḡ(X1, Y )A.

Coherent structures are solutions to the heat equation

−cAX1 = d∆YA+ ωA+ Ḡ(X1, Y )A.

Removing the exponential growth e−ωX1/c, induced again by a Doppler shift, and rescaling Y

and X1, we find

AX1 = ∆YA+ Ḡ(X1, Y )A.

We focus on solutions with decay of the superimposed wave number, that is, decay of ∇(logA),

as X1 → −∞. This is equivalent to the shooting condition in the analysis of the preceding

section, where we imposed a wavenumber k at −∞ and deduced wavenumber and phase jump

at +∞. Such solutions can be written in the form A = 1 + B for a localized B, which solves

the fixed point equation

B(X1, ·) =

∫ X1

−∞

(

T (X1 − x1)Ḡ(x1, ·)(1 +B(x1, ·))
)

dx1.

Here, T (ξ) is the heat semigroup, given as a convolution operator

(T (ξ)f)(y) =
1√
4πξ

∫

R

e−
(y−y′)2

4ξ f(y′)dy′.

It is easy to see that localization of Ḡ, for instance Ḡ ∈ L1 implies that there exists a unique

solution B such that B decays as X1 → −∞. For X1 → +∞, this unique solution will

approach a self-similar solution to the heat equation with asymptotics

B(X1, Y ) = B∗
1√

4πX1
e
− Y 2

4X1 (1 + o1/X1
(1)),

in L1 ∩ L∞. In particular, level lines are close to parabolas, Y 2 − 1
2X1 logX1 = const as

X1 → ∞. We note that these results should be valid only in an intermediate regime, until

the next-order correction in the derivation of the modulation equation becomes relevant. We

therefore expect a crossover at a finite, but large distance from a parabola to the conical sector

described in Section 3.1.

The simulations in Figure 3.2 confirm these predictions in the setting of a reaction-diffusion

system with a homogeneous oscillation. In particular, we observe the conical and parabolic

profile for weak and strong drift, respectively.
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Figure 3.2: Simulations of (1.11), ε = 0.2, with parameters from the introduction , and a horizontal drift

c = 1.34 in the left-hand and c = 2.68 in the right hand picture. Plotted is the asymptotic state when starting

with a spatially homogeneous initial condition. Click on the snapshots to see a movie of the time evolution.

4 Discussion

4.1 Summary

We proposed to study inhomogeneities in oscillatory media as an example for the creation and

annihilation of coherent structures. Motivated by the one-dimensional case, we emphasized

group velocities in the far field as the primary characteristic. In the examples we found, we

were able to compute these group velocities. In the simplest, radial case, group velocities

are radial and coherent structures are either sources, sinks, or contact structures. In two (or

less) space dimensions, small inhomogeneities can create sources. Contact defects are always

weak sinks, group velocities at finite but large distance point inwards. In more than two space

dimensions, small potentials create weak sources or sinks, with group velocities converging to

zero in the far field. In fact, the phase jump between the center and infinity is finite, so that

typically only a finite number of rings are observed in physical space. Our study of moving

inhomogeneities revealed more subtle effects. Group velocities may point outward only in a

sector and inward along the complement. In analogy to the one-dimensional situation, we

would refer to these structures as transmission defects, since waves both enter and leave a

fixed neighborhood of the defect.

4.2 Fluxes

Instead of retaining only the sign of (cg, x/|x|), that is, inward versus outward transport, we

may look at the group velocity as a map from Sn−1 to R
n, on large centered spheres. In most

of our cases, this map converges as the size of the sphere tends to infinity. There are then

various ways to extract quantitative information from this map in order to characterize the

coherent structures. For instance, we may define the net flux J associated with the phase of

a coherent structure Φ as

J(Φ) = lim
R→∞

(Rn−1Vol (Sn−1))−1

∫

|x|=R
j(x)dσ, with j(x) = (cg(x), x/|x|),

where σ is the (n − 1)-dimensional Lebesgue surface element on |x| = R ⊂ R
n. In addition

to the distinction between sources, J > 0, contact defects, J = 0, and sinks J < 0, J also
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retains the strength of the source, so J ∼ ε in one space dimension, and J ∼ e−1/ε in two

space dimensions, where we neglected normalizing constants. This can be readily seen from

our main results on the expansion for the wavenumber k in the far field. Indeed, cg ∼ k

since ω ∼ k2, which immediately gives the expansion using Theorem 1 in the radial case and

Proposition 3.1 in the case of the eikonal approximation; see also the remark at the end of

Section 3.1. As a limit, J does not retain the correction terms which distinguish between

weak sources and sinks. For the transmission defects that we discussed in the case of slowly

moving sources, the mean drift cancels in the integral so that we are lead to interpreting the

case εM > 0 as a source rather than a transmission defect: transmission in the horizontal

direction is superimposed by a source term, visible in particular in the vertical direction.

For inhomogeneities moving with finite speed, it is not difficult to see that the limit actually

vanishes: group velocities generated by the inhomogeneity decay almost everywhere.

4.3 Degrees

A more phenomenological classification would look at constant level lines of Φ, or u, directly.

We showed that level lines are expanding circles, with bounded and converging correction

terms in case of anisotropic inhomogeneities. In case of moving inhomogeneities, we found

cones and parabolas in the far field. Level lines need not form closed curves, as the case of

spiral waves illustrates. In our case, however, it is not difficult to see that spirals cannot form.

Indeed, one can define the topological degree of the defect as the degree iphase of the phase as

a map from a large circle into a circle [25]. Since the phase is everywhere defined in our case

of weak inhomogeneities, this map extends to a map from the disc into to the circle so that

the degree vanishes. Note that fluxes do not distinguish between target patterns and spiral

waves, while the topological degree does not distinguish between sources and sinks. Another

degree igrad would be the Brouwer degree of cg. If j > 0 pointwise (source), then igrad = 1,

and if j < 0 pointwise, then igrad = −1, regardless of iphase. For a plane wave, igrad = 0. Note

however that igrad need not be defined for all coherent structures, since group velocities may

vanish even in the far field.

4.4 Stability

Using the methods employed to prove existence, one can also track eigenvalues of the lin-

earization. We conjecture that all coherent structures discussed here are stable. In the eikonal

approximation, this can be seen after a Cole-Hopf transformation: solutions to the heat equa-

tion with source term approach the eigenfunction with the largest eigenvalue, exponentially

when there is a spectral gap. For the reaction-diffusion systems, we expect that the methods

developed in Section 2 should give spectral stability. We are not aware of nonlinear stabil-

ity proofs for sources in reaction diffusion system; see however [7] for a related result for a

transmission defect.
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5 Appendix

We prove Proposition 3.1. Our proof follows the ideas outlined in Section 2, setting up a

dynamical systems framework where asymptotics are a consequence of expansions on stable

and unstable manifolds. We rewrite the equation (3.6) as

Arr +
1

r
Ar +

1

r2
Aϕϕ +G(r, ϕ)A − γ2A = 0, ω = −γ2

in the form

Ar = MB

Br = MA− γ2

r
M−2B −M−1GA, (5.1)

where M is the unbounded self-adjoint operator

M =

√

− 1

r2
∂ϕϕ + γ2 ≥ γ,

and A,B ∈ L2(S1). We set w± = A ± B. Since M is self-adjoint and positive, and the

correction terms are bounded as operators, with norm O(r−1), by the assumptions on Ḡ, this

equation possesses an exponential dichotomy [14]: there is Ψ(r) : L2 → L2, Ψ = O(r−1) so

that any solution that is bounded as r → ∞ satisfies w+ = Ψw−. We end up with an evolution

equation for w− which describes the asymptotics of any bounded solution:

w′
− = L−(r)w−, L− = −M + N , with N bounded, N = −γ

2

2r
M−2 + O(r−(1+β)).

We start analyzing the asymptotics neglecting the bounded O(r−(1+β))-terms contained in N .

The truncated equation is diagonal in Fourier modes w− =
∑

k∈Z
wke

ikϕ,

(wk
−)′ = Lk

−w
k
−, Lk

− = −γ − 1

2r
+ O(r−(1+β)).

We next set wk :=
√
reγrwk

−, and find

w′
k =

(

γ −
√

k2

r2
+ γ2

)

wk +
k2

2r(k2 + γ2r2)
wk + O(r−(1+β)w),

or short,

w′
k =

1

r2
ϕ

(

1

r
; k

)

wk + O
(

r−(1+β)w
)

.

Error terms are coupling all wk, but are uniformly bounded as operators on ℓ2. Since the

right-hand side is O(r−(1+β)), we can introduce the compactified time variable τ = −1/(βrβ)

and find

ẇk = τ1−βϕ(τ ; k)wk + O(w).

More precisely, we have

ϕ(τ ; k) = τ1−β(γ −
√

γ2 + τ2k2) + τ
k

2(k2τ2 + γ2)
+ O(τ−(1+β)G(−1/τ)).
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Here we assume β ≤ 1 without loss of generality. The flow map from a fixed time τ = −1/r0
to τ = 0 is readily verified to be bounded (and actually differentiable in r0), using the explicit

representation in Fourier modes and a variation-of-constant formula. This provides us with

the desired limiting profile w, and, substituting back, with asymptotics for w−, w+, u, and

v. The gradient estimates readily follow from the same argument, carried out in the space ℓ12,

with
∑

k |wk|2|k|2 <∞.
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