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Abstract

We study the effects of adding a local perturbation in a pattern forming system, taking as an
example the Ginzburg-Landau equation with a small localized inhomogeneity in two dimensions.
Measuring the response through the linearization at a periodic pattern, one finds an unbounded linear
operator that is not Fredholm due to continuous spectrum in typical translation invariant or weighted
spaces. We show that Kondratiev spaces, which encode algebraic localization that increases with
each derivative, provide an effective means to circumvent this difficulty. We establish Fredholm
properties in such spaces and use the result to construct deformed periodic patterns using the Implicit
Function Theorem. We find a logarithmic phase correction which vanishes for a particular spatial
shift only, which we interpret as a phase-selection mechanism through the inhomogeneity.

1 Introduction

1.1 Pattern-forming systems

Periodic, stripe-like patterns emerge in a self-organized fashion in a variety of experiments, ranging
from Rayleigh-Bénard convection to open chemical reactors. Such regular, periodic patterns are usually
studied in domains with idealized periodic boundary conditions, where existence and stability can be
readily obtained using classical methods of bifurcation theory. The simplest example for such pattern-
forming systems is the Swift-Hohenberg equation

ut = −(∆ + 1)2u + δ2u − u3, (x, y) ∈ R2,

which is known to possess periodic patterns of the form

u(x, y) = u∗(kx; k), u∗(ξ + 2π; k) = u∗(ξ; k),

with k ∼ 1, for small δ.

Beyond periodic boundary conditions, the dynamics for δ ∼ 0 can be approximated using the amplitude
equation formalism. In the case of the (isotropic) Swift-Hohenberg equation, one finds the Newell-
Whitehead-Segel equation

AT = −(∂X − i∂YY )2A + A − A|A|2,
∗GJ and AS acknowledge support by the National Science Foundation through grants DMS-0806614 and DMS-1311740.

1



using an Ansatz
u(x, y, t) = δA(δx,

√
δy, δ2t)eix + c.c.,

and expanding to order δ3, as a solvability condition [3, 13]. There are several difficulties with the NWS
equations and their validity as an approximation [17], related to the fact that the original equation is
isotropic, while the expansion singles out a preferred wave vector, here the vector k = (1, 0)T . The
situation is simplified in anisotropic pattern-forming systems such as

ut = −(∆ + 1)2u + ∂yyu + δ2u − u3,

where a similar Ansatz leads to the isotropic (sic!) Ginzburg-Landau equation

AT = ∆A + A − A|A|2, (1.1)

possibly after rescaling X and Y .

More drastically, one can approximate the dynamics near periodic patterns using an Ansatz

u(t, x, y) = u∗(Φ(δx, δy, δ2t); |∇Φ|),

where one obtains as a compatibility condition the phase-diffusion equation

ΦT = ∆X,YΦ,

for suitable values of the wavenumber |∇Φ|, after possibly rescaling X,Y .

Both, amplitude and phase-diffusion equations can be shown to be good approximations under suitable
choices of initial conditions, on time scales T = O(1); see for instance [4, 13] and references therein.

1.2 Inhomogeneities

Local impurities in experiments sometimes have minor, sometimes more dramatic effects on the resulting
patterns. It is known, for instance, that target-like patterns can nucleate at impurities in the Belousov-
Zhabotinsky reaction; see [6] for an analysis in this direction. Also, spiral wave anchoring at impurities
such as arteries can have dramatic impact on excitable media [15]. Effects in Swift-Hohenberg-like
systems appear to be more subtle and are the main focus of our present study. We focus on the somewhat
simpler case of the isotropic GL equation (1.1), modeling anisotropic pattern-forming systems, with an
added localized inhomogeneity,

AT = ∆A + A − A|A|2 + εg(x, y). (1.2)

We intend to study inhomogeneities in the isotropic SH equation

ut = −(∆ + 1)2u + δ2u − u3 + εg(x, y),

in future work.

In order to illustrate the difficulties that arise, consider the more dramatic simplification of the phase-
diffusion approximation with an inhomogeneity 1,

Φt = ∆Φ + εg(x, y).
1We stress however that one cannot derive such an approximation in the presence of inhomogeneities due to the different

scalings of Φ and g.
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Stationary patterns here are solutions to the Poisson equation ∆Φ = −εg(x, y), with solutions exhibiting
logarithmic growth at infinity. Thinking of the phase-diffusion as an approximation to a larger system,
one would like a robust way of solving the stationary equation, if possible relying on an implicit function
theorem. The difficulty here is that the Laplacian is not invertible on L2, say, not even Fredholm as an
unbounded operator.

A remedy, in this context, are spaces with algebraic weights, which we refer to as Kondratiev spaces. To
be precise, define 〈x〉 =

√
x2 + y2 + 1 and M2,p

γ as the completion of C∞0 in the norm

‖u‖M2,p
γ

:=
∑

j+k=2

‖〈x〉γ+2∂
j
x∂

k
yu‖Lp +

∑
j+k=1

‖〈x〉γ+1∂
j
x∂

k
yu‖Lp + ‖〈x〉γu‖Lp .

Note that the algebraic weights increase with the number of derivatives, making the different parts of the
norms scale in the same fashion, as opposed to norms in the classical Sobolev spaces W2,p

γ , with norm

‖u‖W2,p
γ

:=
∑

j+k62

‖〈x〉γ∂ j
x∂

k
yu‖Lp .

It turns out that the Laplacian is Fredholm for suitable γ on M2,p
γ [11], albeit with negative index in

dimension 2 when γ > 0. This negative index makes “explicit” far-field corrections via logarithmic
terms, just as seen in the Green’s function of the Laplacian, necessary when describing the far-field
effect of localized inhomogeneities on periodic patterns. This result also holds for a certain class of
elliptic operators with coefficients that decay sufficiently fast at infinity [8], but we are not aware of
results for elliptic operators without scaling invariance. This represents a difficulty when looking at the
linearization of (1.2), which for k = 0 decouples into ∆ which is, and ∆ − I, which is not scale invariant.
For k , 0 these components couple and simple scale invariance is lost. Furthermore, the linearization is
in general not a small or compact perturbation of a scale invariant operator.

1.3 Main results

To state our main results, we consider the stationary solutions of (1.2),

0 = ∆A + A − A|A|2 + εg(x, y). (1.3)

For ε = 0, the system possesses “stripe patterns”

A(x, y) =
√

1 − k2eikx,

for wavenumbers |k| < 1. Those solutions are linearly stable for |k| < 1/
√

3 and unstable for |k| > 1/
√

3.
The instability mechanism is known as the Eckhaus (sideband) instability. We are now ready to state our
main result.

Theorem 1 Fix k with |k| < 1/
√

3 and suppose that g ∈ W2,2
β for some β > 2. Then there exists an ε0 > 0

and a family of solutions to (1.3),

A(x, y; ε, ϕ) = S (x, y; ε, ϕ)eiΦ(x,y;ε,ϕ), |ε| < ε0,

with A(x, y; 0, ϕ) =
√

1 − k2ei(kx+ϕ). Moreover, A(x, y; ε, ϕ) is smooth in all variables and satisfies the
following expansions in x, y for fixed ε, ϕ,

S (x, y; ε, ϕ)→
√

1 − k2 (1.4)

Φ(x, y; ε, ϕ) − kx −
c(ε, ϕ)

2k
√

1 − k2
log(αx2 + y2)→ Φ∞(ε) + ϕ, (1.5)
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for |x| → ∞, with α = 1−k2

1−3k2 , for some smooth function c(ε, ϕ) with expansion

c(ε, ϕ) = εc1(ϕ) + O(ε2),

where

c1(ϕ) =

√
1 − 3k2

π(1 − k2)

"
Im [g(x, y)e−i(kx+ϕ)]dxdy.

Remark 1.1 (i) Our approach gives more detailed expansions than stated. In fact, we obtain a de-
composition of S and Φ into a localized part that is smooth in ε, uniformly in x, and an explicit
logarithmic far-field correction with coefficient c(ε, ϕ); see the Ansatz (3.8). Also, in the class of
functions with this particular form, the solutions described in the theorem are locally unique.

(ii) The expression for c1(ε, ϕ) is reminiscent of a projection onto the kernel. Indeed, the integral
represents the scalar product (u, v) = Re

∫
uv̄ of the perturbation εg and the “kernel” of the

linearization induced by the infinitesimal phase rotation, d
dϕeikx+ϕ. Vanishing of such a scalar

product indicates persistence of solutions in problems where the linearization is Fredholm, such
as in the Melnikov analysis for homoclinic bump-like solutions.

Note that c1(ϕ) is periodic in ϕ and vanishes at ϕ = arg
("

g(x, y)e−ikxdxdy
)
, so that it possesses

at least 2 zeroes (counting multiplicity). Assuming that c1(ϕ∗) = 0, c′1(ϕ∗) , 0, we can find ϕ∗(ε)
so that

c(ε, ϕ∗(ε)) = 0.

Inspection of the expansion in the theorem shows that ϕ is the phase shift of the underlying pattern
in the far field. For these specific values of ϕ, the correction in the far field to the periodic pattern
is bounded and small, while for other values of ϕ the correction is unbounded in the phase. We
interpret this result by referring to ϕ∗(ε) as the selected phase. In other words, introducing inho-
mogeneities induces a selected phase shift of the primary pattern which accommodates stationary
solutions without logarithmic corrections. Numerical simulations confirm this phenomenon, with
a diffusive spread of the phase shift in the domain. It would be interesting to establish this diffusive
convergence to a selected phase analytically.

(iii) We believe that similar results could be obtained in space dimensions 1 and 3. In one space di-
mension, the analysis is easier since ODE methods can be used to analyze stationary solutions. In
fact, the analysis reduces to a Melnikov analysis for the intersection of center-stable and center-
unstable manifolds. In this one-dimensional context, the analysis also immediately carries over
to the Swift-Hohenberg equation. On the other hand, the 3-dimensional case is easier than the
2-dimensional case considered here since the corrections needed to compensate for negative Fred-
holm indices are decaying like 1/|x|. In fact, the Laplacian is invertible for suitable weights γ in
Kondratiev spaces in R3. We refer the reader to [6], where dynamical systems methods were used
to analyze the complex-coefficient Ginzburg-Landau equation in space dimensions 1, 2, 3, exhibit-
ing a related dependence of far field corrections on the dimension. Note however that the analysis
there uses exponential localization of g(x) and is not easily extended beyond radial symmetry.

The structure of this paper is as follows. In Section 2 we give a more detailed description of weighted
Sobolev spaces and Kondratiev spaces, and state Fredholm properties of the Laplacian in this setting.
Next, in Section 3, we summarize the procedure leading up to the main result, first explaining the dif-
ficulties encountered when analyzing the linearization of equation (1.3) about stripe patterns, and then
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describing the linear operator T that we use to overcome these difficulties. In Section 4 we use the re-
sults from Section 2 to explore the Fredholm properties of this last operator and show that by adding
logarithmic corrections we can obtain an invertible operator T̂ . Section 5 establishes properties of the
nonlinearity in our functional analytic setting. We show that the full operator F̂ is well defined, continu-
ously differentiable, with invertible linearization T̂ . Finally, in Section 6, we prove our main result using
the Implicit Function Theorem.

2 Fredholm properties of the linearization and weighted spaces

This section is intended as a summary of theorems and results that describe weighted spaces and their
properties. These results are the basis for the analysis in the following sections and will allow us to
conclude Fredholm properties of the linearized operators considered therein.

2.1 Weighted Sobolev spaces

Throughout the paper we will use the symbol W s,p
γ to denote weighted Sobolev spaces, which we define

as the completion of C∞0 (Rn) under the norm

‖u‖W s,p
γ

=
∑
|α|6s

‖〈x〉γDαu‖Lp .

Here, 〈x〉 = (1 + |x|2)1/2, x = (x, y), γ ∈ R, and s is a positive integer.

We start with a generalization of the invertibility of the operator ∆ − I to weighted spaces.

Proposition 2.1 The operator ∆−a : W2,p
γ → Lp

γ is invertible for all real numbers a > 0 and p ∈ (1,∞).

Before jumping into the proof, let us recall the following theorem from Kato [5], which we will use.

Theorem 2 (Kato, p. 370 ) Let T (γ) be a family of compact operators in a Banach space X which are
holomorphic for all γ ∈ D ⊂ C. Call γ a singular point if 1 is an eigenvalue of T (γ). Then either all
γ ∈ D are singular points or there are only finitely many singular points in each compact subset of D.

Proof of Proposition 2.1. It is straightforward to see that the following diagram commutes,

W2,p
γ Lp

γ

W2,p Lp

∆ − a

〈x〉γ 〈x〉γ

L(γ)

where

L(γ)u = 〈x〉γ(∆ − a)〈x〉−γu

= (∆ − a)u − 2γ〈x〉−2x · ∇u + γ(γ − 2)〈x〉−4|x|2u − nγ〈x〉−2u

= (∆ − a)u − R(γ)u.
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Since R(γ) : W2,p → Lp can be approximated in Lp by a sequence of compactly supported continuous
functions, it is a compact operator and hence L(γ) has Fredholm index zero. Furthermore, the operator
T (γ) : W2,p → W2,p defined by T (γ) = (∆ − a)−1R(γ) is compact and holomorphic for all γ ∈ C. We
will use this fact and Kato’s Theorem to show that the operator L(γ) is invertible. The result of the
proposition then follows since the diagram commutes.

First, observe that if u ∈ ker L(β) then u must also be in ker L(α) for all α 6 β. This is a consequence of
the commutativity of the diagram and the inclusions W2,p

β ⊂ W2,p
α , which hold for all α 6 β.

Now, to reach a contradiction suppose that β ∈ R is a singular point of T (γ) so that there exists u ,
0 ∈ W2,p such that (∆ − a)−1L(β)u = 0. Since (∆ − a) : W2,p → Lp is one to one, then u has to be in
the kernel of L(β). From the above discussion we can infer that if β is a singular point then all points
x ∈ (−∞, β] are also singular. In particular [α∗, β], for any α∗ < β, is a compact subset of C with this
property. Kato’s Theorem then implies that all points in the complex plane are singular. However, since
L(0) = (∆− a) : W2,p → L2,p is one to one, γ = 0 cannot be singular. Consequently T (γ) has no singular
points in R and (∆ − a) : W2,p

γ → Lp
γ is an isomorphism for all γ ∈ R.

Lemma 2.2 The operator ∆γ : W2,p
γ → Lp

γ is not a Fredholm operator for p ∈ (1,∞).

Proof. From the proof of Proposition 2.1 we immediately conclude that ∆γ is Fredholm if an only if ∆0
is Fredholm, since they are conjugate up to a relatively compact perturbation.

2.2 Kondratiev spaces

Kondratiev spaces were first introduced to study boundary value problems for elliptic equations in do-
mains with conical points [7]. Nirenberg and Walker [16] later used these spaces to show that elliptic
operators with coefficients that decay sufficiently fast at infinity have finite dimensional kernel when
considered as operators between these weighted spaces and McOwen [11] established Fredholm prop-
erties for the Laplacian. Lockhart and McOwen [8, 9, 10] built on these ideas to establish Fredholm
properties for classes of elliptic operators. For example, Lockart [10] studied elliptic operators of the
form A = A∞ + A0 in non-compact manifolds, where A∞ represents a constant coefficient homogeneous
elliptic operator of order m, and A0 an operator of order at most m with coefficients that decay fast at
infinity. More recently, Kondratiev spaces were used to study the Laplace operator in exterior domains
[2] and similar weighted spaces were used in [14] to understand the Poisson equation in a 1 periodic
infinite strip Z = [0, 1] × R.

Kondratiev spaces have also been used in the context of the Stokes (rather than the Laplace) operator, for
the description of far field asymptotics in fluid problems, such as flows past obstacles; see [18] for the
specific example of exterior domains in R3 and [12] for an application towards bifurcation theory.

We will denote Kondratiev spaces by Ms,p
γ and define them as the completion of C∞0 (Rn) under the norm

‖u‖Ms,p
γ

=
∑
|α|6s

‖〈x〉γ+|α|Dαu‖Lp ,

where 〈x〉 = (1 + |x|2)1/2, γ ∈ R, s ∈ N, and p ∈ (1,∞). Notice the embeddings Ms,p
γ ↪→ W s,p

γ , as well as
Ms,p
γ ↪→ Ms−1,p

γ .

The following theorem describes the behavior of the Laplacian in Kondratiev spaces. Its proof can be
found in [11].

6



Theorem 3 Let 1 < p =
q

q−1 < ∞, n > 2, and γ , −2 + n/q + m or γ , −n/p−m, for some m ∈ N. Then

∆ : M2,p
γ → Lp

γ+2,

is a Fredholm operator and

(i) for −n/p < γ < −2 + n/q the map is an isomorphism;

(ii) for −2 + n/q + m < γ < −2 + n/q + m + 1 , m ∈ N, the map is injective with closed range equal to

Rm =

 f ∈ Lp
γ+2 :

∫
f (y)H(y) = 0 for all H ∈

m⋃
j=0

H j

 ;

(iii) for −n/p − m − 1 < γ < −n/p − m, m ∈ N, the map is surjective with kernel equal to

Nm =

m⋃
j=0

H j.

Here,H j denote the harmonic homogeneous polynomials of degree j.

On the other hand, if γ = −n/p − m or γ = −2 + n/q + m for some m ∈ N, then ∆ does not have closed
range.

3 Outline of proof

Recall that we are interested in solutions of

0 = ∆A + A − A|A|2 + εg(x, y), (3.1)

for localized g and ε small, close to the solutions at ε = 0, A∗(x) =
√

1 − k2eikx, |k|2 < 1/3. Since the
case k = 0 is in fact easier, we will assume in the following that k > 0. A reasonable Ansatz then is

A(x, y, ε) = (
√

1 − k2 + s(x, y; ε))ei(kx+φ(x,y;ε)),

with new variables s, φ, which solve

∆s + (s + τ) − (s + τ)(k2 + 2k∂xφ + |∇φ|2) − (s + τ)3 + εRe (ge−i(kx+φ)) = 0 (3.2)

∆φ +
2k∂xs
s + τ

+
2∇s · ∇φ

s + τ
+
εIm (ge−i(kx+φ))

s + τ
= 0, (3.3)

where we set τ =
√

1 − k2. Linearizing at ε = 0, s = 0, φ = 0, we obtain the operator

L
[
s
φ

]
=

∆ − 2τ2 −2kτ∂x
2k
τ
∂x ∆

 [s
φ

]
. (3.4)

The results from the Section 2, and in particular Theorem 3, suggest that we should require that φ ∈ M2,p
γ

and that (3.3) holds in Lp
γ+2. Then φx ∈ W1,p

γ+1 and, using the linearization of (3.2) with Proposition 2.1,
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this suggests s ∈ W3,p
γ+1 and sx ∈ W2,p

γ+1. This however is not sufficient localization for (3.3), where sx

enters, and which we assumed to be satisfied in Lp
γ+2.

In other words, the coupling terms, which are absent for k = 0, prohibit the simple use of Sobolev
spaces for s and Kondratiev spaces for φ. Roughly speaking, the coupling destroys the linear scaling
invariance in the φ-equation, which is necessary at least at infinity in results on Fredholm properties in
Kondratiev spaces, which intrinsically mix regularity and localization properties. We intend to address
these problems more generally in future but focus here on a simple an direct construction that circumvents
the problem by extending the system and introducing appropriate norms for derivatives.

Consider therefore T : D ⊂ X → R ⊂ Y,

T



s
ψ

θ

u
v
w


=



∆ − a −1 0 0 0 0
0 ∆ 0 b 0 0
0 0 ∆ 0 b 0
0 −∂xx 0 ∆ − a 0 0
0 0 −∂xx 0 ∆ − a 0
0 −∂yy 0 0 0 ∆ − a





s
ψ

θ

u
v
w


, (3.5)

were ψ = 2kτ∂xφ, θ = 2kτ∂yφ, a = 2τ2, b = 4k2,

X = W2,2
γ × M2,p

γ × M2,p
γ × Lp

γ+2 × Lp
γ+2 × Lp

γ+2,

Y = Lp
γ × Lp

γ+2 × Lp
γ+2 ×W−2,p

γ+2 ×W−2,p
γ+2 ×W−2,p

γ+2 .

Here, W−k,p
γ denotes the dual of Wk,p

γ . We also define the closed subspaces

D =
{
X = (s, ψ, φ, u, v,w) ∈ X : u = ∂xxs, v = ∂xys, w = ∂yys, ∂yψ = ∂xθ

}
,

R =

{
Y = ( f1, f2, f3, f4, f5, f6) ∈ Y :

∫
f2 =

∫
f2 · y =

∫
f3 =

∫
f3 · x = 0,

f4 = ∂xx f1, f5 = ∂xy f1, f6 = ∂yy f1, and ∂y f2 = ∂x f3
}
.

The second and third components of T X in (3.5) are obtained by taking the x and y derivatives of the
phase equation (3.3), respectively. The last three components are obtained by taking the second partial
derivatives of the amplitude equation (3.2) with respect to xx, xy, and yy.

We will see in Section 4 that the linear operator T : D → R is a Fredholm operator of index −1 for
optimal choices of weights, indicating a missing parameter in the far field. We therefore add a single
degree of freedom in the far field through the variable ĉ ∈ R via the Ansatz

s = ŝ + ĉP1, u = û + ĉ∂xxP1,

ψ = ψ̂ + ĉ∂xP2, v = v̂ + ĉ∂xyP1,

θ = θ̂ + ĉ∂yP2, w = ŵ + ĉ∂yyP1,

where
P1 =

1 − α
2bα

∂x[χ log(αx2 + y2)], P2 =
1
2
χ log(αx2 + y2), (3.6)
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b = (2k)2, α =
1 − k2

1 − 3k2 , and χ is a smoothed version of the indicator function χ|x|>1. Substituting this

Ansatz into (3.2),(3.3) and linearizing, we find an operator T̂ : D× R→ R, given by

T̂ξ =



∆ − a −1 ∆P1
∆ b ∆P2 + b∂xxP1

∆ b ∆P2 + b∂xyP1
−∂xx ∆ − a ∆∂xxP1

−∂xx ∆ − a ∆∂xyP1
−∂yy ∆ − a ∆∂yyP1





ŝ
ψ̂

θ̂

û
v̂
ŵ
ĉ


, (3.7)

where again a = 2τ2, and b = 4k2. We will show in the Section 4 that this operator is invertible.

Recapitulating, we are lead to consider the Ansatz

A(x, y; ε, ϕ) =

( √
1 − k2 + s(x, y; ε, ϕ) + c(ε, ϕ)P1(x, y)

)
e

i
(
kx+φ(x,y;ε,ϕ)+ c(ε,ϕ)

2k
√

1−k2
P2(x,y)

)
, (3.8)

with P1 and P2 as in (3.6), with additional equations for the derivatives

u = ∂xxs, v = ∂xys, w = ∂yys, ψ = (2k)∂xφ, θ = (2k)∂yφ.

We obtain a nonlinear equation

F̂ε,ϕ = 0, F̂ε,ϕ : D× R3 → R; (3.9)

see Subsection 5 for a more detailed description of this nonlinear equation. The advantage of this subtle
reformulation of the problem is encoded in the following result, which establishes applicability of the
standard Implicit Function Theorem and is the key ingredient to the proof of Theorem 1.

Theorem 4 Let p = 2, γ ∈ (0, 1), and g ∈ W2,p
β , with β > γ + 2. Then, the operator F̂ε,ϕ : D × R3 → R

is of class C∞. Furthermore, for fixed ϕ and at ε = 0, its derivative is given by the invertible operator
T̂ : D× R→ R.

The proof of this theorem will occupy the next 2 Sections. In Section 4 we show the fact that T is a
Fredholm operator and that T̂ is invertible, and in Section 5 we show that the operator F̂ is of class C∞.

4 The linear operator

In this section we consider the linear operators T : D → R and T̂ : D × R → R defined in (3.5) and
(3.7), respectively. We first prove that for p = 2 and γ ∈ (0, 1) the operator T : X → Y is a Fredholm
operator of index −6. Then, we show that restricting the domain and range to D and R turns T into
a Fredholm operator of index −1. Finally, using a bordering lemma, we prove that the operator T̂ is

invertible. Throughout, we assume γ ∈ (0, 1) and 0 < |k| <
1
√

3
.

Proposition 4.1 The operator T : X → Y defined in (3.5) is a Fredholm operator with index i = −6
and trivial kernel. The cokernel is spanned by

{(0, a, 0, b, 0, 0)T e∗j , (0, 0, a, 0, b, 0)T e∗j , j = 1, 2, 3}, e∗1 = 1, e∗2 = x, e∗3 = y. (4.1)
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Proof. First, notice that due to the lower block-triangular structure of T , it is enough to consider the
restriction T̃ to the variables ψ, θ, u, v, which we write in the form

T̃ξ = Lξ + bBξ, (4.2)

where b = 4k2, a = 2(1 − k2),

L =


∆ 0 0 0
0 ∆ 0 0
−∂xx 0 ∆ − a 0

0 −∂xx 0 ∆ − a

 , B =


0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0

 , and ξ =


ψ

θ

u
v

 .
We need to show that

T̃ : X̃ = M2,2
γ × M2,2

γ × L2
γ+2 × L2

γ+2 −→ Ỹ = L2
γ+2 × L2

γ+2 ×W−2,2
γ+2 ×W−2,2

γ+2 ,

is a Fredholm operator of index i = −6. Since T̃ is block-diagonal with respect to (ψ, u) and (θ, v), it
is sufficient to show that the restriction to (ψ, u) is Fredholm with index −3. For b = 0, the claim now
follows directly from Theorem 3 and Proposition 2.1, due to the lower triangular structure and the fact
that, with our choice of γ, p, the Laplacian is Fredholm with index −3. We will address the more difficult
situation b , 0, next.

In order to establish the desired Fredholm properties, we need to solve

∆ψ + bu = f1 (4.3)

∂xxψ + (∆ − a)u = f2, (4.4)

for f1, f2 in a codimension-3 subspace of L2
γ+2 ×W−2,2

γ+2 , with bounds on (ψ, u) ∈ M2,2
γ × L2

γ+2.

Denote by I−Q a projection on the range of the Laplacian, so that
∫

(I−Q) f =
∫

x(I−Q) f =
∫

y(I−Q) f =

0. We can then decompose

∆ψ + bu = (I − Q) f1 (4.5)

∂xxψ + (∆ − a)u = (I − Q) f2, (4.6)

and Qu = 1
b Q f1 = − 1

a Q f2, exhibiting the 3 solvability conditions (4.1). We next solve (4.6) for u,
substitute in (4.5), to obtain

Lψ = (I − Q) f1 − (∆ − a)−1(I − Q) f2 =: f , L = [∆ + b(∆ − a)−1∂xx],

where f = (I−Q) f . It therefore remains to show that L : M2,2
γ → (I−Q)L2

γ+2 is invertible. We therefore
factor

Lψ =M

(
∆ −

b
a
∂xx

)
ψ,

M2,2
γ (I − Q)L2

γ+2 (I − Q)L2
γ+2

∆ −
b
a
∂xx

M

By Theorem 3 the operator
(
∆ −

b
a
∂xx

)
: M2,2

γ → Rm is invertible, since it is conjugate to the Laplacian

by a simple x-rescaling operator. It is therefore sufficient to establish that M is an isomorphism of
(I − Q)L2

γ+2. Consider therefore the associated Fourier symbol

M̂(k, l) =
k2 + l2

k2 + l2 − b
a k2
−

bk2

(k2 + l2 + a)(k2 + l2 − b
a k2)

.
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Exploiting that k2 < 1
3 so that 1 −

b
a
> 0, it is straightforward to see that

sup
(k,l)∈R2

|M̂(k, l)| + |M̂(k, l)−1| < ∞,

so that M is an isomorphism of L2. We next show that M is an isomorphism on (I − Q)L2
j , j = 2, 3,

which by interpolation theory gives the desired result. Equivalently, we need to show boundedness of
the multiplication operator M̂ on the subspace of H j, j = 2, 3 consisting of functions functions f with
f (0) = 0 and, in case j = 3, ∇ f (0) = 0. Since M̂(k, l) = a + O(k2 + l2) near k = l = 0, we readily find
that ‖DαM̂|L∞ + ‖Dα(M̂−1)|L∞ < ∞ for all indices |α| 6 2, which proves that M̂ is an isomorphism on
H2. For the case j = 3, we use that ‖Dα(kM̂)|L∞ + ‖Dα(kM̂−1)|L∞ < ∞ for all indices |α| = 3, which
readily implies that M̂ is an isomorphism on H3 ∩ { f (0) = 0}. One can also readily check that the range
ofM andM−1 is indeed contained in Rg (I − Q), which concludes the proof.

Corollary 4.2 The operator T : D → R defined by (3.5) is Fredholm with index −1 and cokernel
∂y f2 + ∂x f3.

Proof. Inspection of T shows that the range of the restriction of T toD is actually contained in R, which
implies that T : D → R is injective and the range is closed (T is semi-Fredholm). We need to show that
the cokernel is one-dimensional.

Take f ∈ Rg (T ) ⊂ X, with f4 = ∂xx f1, f5 = ∂xy f1, f6 = ∂yy f1, and ∂y f2 = ∂x f3. By construction of T ,
notably having taken derivatives of equations for s and φ, and by injectivity, T−1 f satisfies u = ∂xxs, v =

∂xys, w = ∂yys, and ∂yψ = ∂xθ. As a consequence, the cokernel of T : D → R is a subset of the cokernel
of T : X → Y. Inspecting the cokernel in (4.1) and the definition of R, we see that (e∗j , f4) = (e∗j , f5) = 0,
so that the integral conditions in the definition of R represent precisely 4 of the 6 conditions on the co-
kernel. One of the remaining conditions,

∫
f2 · x =

∫
f3 · y is a consequence of ∂y f2 = ∂x f3, whereas∫

f2 · x can be readily seen to act non-trivially. As a consequence T is Fredholm of index -1 as claimed,
and the cokernel is spanned by (0, x, 0, 0, 0, 0)T or, equivalently, (0, x, y, 0, 0, 0)T .

We next consider the operator T̂ : D× R→ R defined by (3.7). Recall that

s = ŝ + ĉP1, u = û + ĉ∂xxP1,

ψ = ψ̂ + ĉP2, v = v̂ + ĉ∂xyP1,

θ = θ̂ + ĉP3, w = ŵ + ĉ∂yyP1.

(4.7)

Here,

P1(x, y) =
(1 − α)

2bα
∂x[χ ln(αx2 + y2)], P2(x, y) =

1
2
∂x[χ ln(αx2 + y2)], P3(x, y) =

1
2
∂y[χ ln(αx2 + y2)],

with α =
1 − k2

1 − 3k2 , b = (2k)2, and χ ∈ C∞(R2) defined by

χ(x, y) =

 0 if 0 6
√
αx2 + y2 6 1/2

1 if 1 6
√
αx2 + y2

.

To show T̂ : D× R→ R is invertible we will need the following lemma.
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Lemma 4.3 The operator

M : R→ R, c 7→
[
∆P1 ∆P2 + b∂xxP1 ∆P3 + b∂xyP1 ∆∂xxP1 ∆∂xyP1 ∆∂yyP1

]T
c,

is well-defined and its range satisfies" [
∆P2 + b∂xxP1

]
· xdxdy =

" [
∆P3 + b∂xyP1

]
· ydxdy , 0.

Proof. First notice that the smooth functions Pi, for i = 1, 2, 3, are bounded in compact sets and behave

like
1
|x|

for large values of |x| so that the range of M is indeed a subset of Y. From the definition, it is not

difficult to check that the operator M maps into the desired space R. We need to show that" [
∆P2 + b∂xxP1

]
· xdxdy =

" [
∆P3 + b∂xyP1

]
· ydxdy , 0.

Straightforward calculations, using the rescaling X =
√
αx,Y = y, show that

∆P2 + b∂xxP1 =

√
α

2
∆X,Y

[
∂

∂X

(
χ · ln(X2 + Y2)

)]
,

where we write ∆X,Y = ∂XX + ∂YY . Therefore,"
[∆P2 + b∂xxP1] · xdxdy =

" [ √
α

2
∆X,Y

[
∂

∂X

(
χ · ln(X2 + Y2)

)]]
· XdXdY

=

" [ √
α

2
∆X,Y

(
χ · ln(X2 + Y2)

)]
dXdY

=
√
απ.

Similarly, using the same rescaling, it can be shown that

∆P3 + b∂xyP1 =
1
2

∆X,Y

[
∂

∂Y

(
χ · ln(X2 + Y2)

)]
,

and consequently" [
∆P3 + b∂xyP1

]
· ydxdy =

" [
1
2

∆X,Y

[
∂

∂Y

(
χ · ln(X2 + Y2)

)]]
· Y
√
αdXdY

=
√
απ.

Corollary 4.4 The operator T̂ : D× R→ R is invertible.

Proof. Notice that T̂ = [T M], where T : D → R is the Fredholm operator of index −1 described in
Corollary 4.2, and M : R→ R is defined in Lemma 4.3. A bordering lemma implies that T̂ : D×R→ R
is a Fredholm operator of index 0. Lemma 4.3 implies that Rg (M) 1 Rg (T ), so that T̂ is onto, hence
invertible.
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5 The nonlinear map

In this section, we show by a series of lemmas that the nonlinear problem (3.9) is well defined and
continuously differentiable. We first give explicit expressions for each component of the nonlinearities.
We then state and prove several lemmas that will help us show that the nonlinearity is well defined.
Finally, we show that the nonlinearities are of class C∞.

The following expressions represent each component of the operator F̂ε,ϕ announced in (3.9):

F̂1(ξ; ε, ϕ) =∆s − 2τ2s − (s + τ)
(
ψ

τ
+

1
(2kτ)2 (ψ2 + θ2)

)
− (s3 + 3s2τ) + εRe [ge−i(kx+φ(ϕ))],

F̂2(ξ; ε, ϕ) =∆ψ +
(2k)2τu + 2(uψ + vθ + sxψx + syψy)

s + τ
−

(2k)2τ(sx)2 + 2sx(sxψ + syθ)
(s + τ)2

+
εIm [∂x(ge−i(kx+φ(ϕ)))]

s + τ
−
εsxIm [ge−i(kx+φ(ϕ))]

(s + τ)2 ,

F̂3(ξ; ε, ϕ) =∆θ +
(2k)2τv + 2(vψ + wθ + sxθx + syθy)

s + τ
−

(sk)2τsxsy + 2sy(sxψ + syθ)
(s + τ)2

+
εIm [∂y(ge−i(kx+φ(ϕ)))]

s + τ
−
εsyIm [ge−i(kx+φ(ϕ))]

(s + τ)2 ,

F̂4(ξ; ε, ϕ) =∆u − 2τ2u − u
(
ψ

τ
+

1
(2kτ)2 (ψ2 + θ2)

)
− 2sx

(
ψx

τ
+

2
(2kτ)2 (ψxψ + ψyθ)

)
− (s + τ)

(
ψxx

τ
+

2
(2kτ)2

(
ψxxψ + ψxyθ + |∇ψ|2

))
− (6s(sx)2 + 3s2u + 6τ(sx)2 + 6τsu) + εRe [∂xx(ge−i(kx+φ(ϕ)))],

F̂5(ξ; ε, ϕ) =∆v − 2τ2v − v
(
ψ

τ
+

1
(2kτ)2 (ψ2 + θ2)

)
− sx

(
θx

τ
+

2
(2kτ)2 (θxψ + θyθ)

)
− sy

(
ψx

τ
+

2
(2kτ)2 (ψxψ + ψyθ)

)
− (s + τ)

(
θxx

τ
+

2
(2kτ)2

(
θxxψ + ψyyθ + θxψx + θyψy

))
− (6ssxsy + 3s2v + 6τsxsy + 6τsv) + εRe [∂xy(ge−i(kx+φ(ϕ)))],

F̂6(ξ; ε, ϕ) =∆w − 2τ2w − w
(
ψ

τ
+

1
(2kτ)2 (ψ2 + θ2)

)
− 2sy

(
θx

τ
+

2
(2kτ)2 (θxψ + θyθ)

)
− (s + τ)

(
ψyy

τ
+

2
(2kτ)2

(
θxyψ + θxyθ + |∇θ|2

))
− (6s(sy)2 + 3s2w + 6τ(sy)2 + 6τsw) + εRe [∂yy(ge−i(kx+φ(ϕ)))].

Here, ϕ ∈ R, τ =
√

1 − k2 , k2 <
1
3

, and the variable ξ = (s, ψ, θ, u, v,w) is given by the formulas in (4.7),

so that we can actually consider F̂ as an operator onD× R for fixed ε, ϕ.

Since (2kτ)∇φ = 〈ψ, θ〉 we define φ by

φ(x, y; ε, ϕ) = φbd + φlog, (5.1)
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where

φbd(x, y; ε, ϕ) =ϕ +
1

2kτ

∫ 1

t=0

(
ψ̂(tx, ty; ε)x + θ̂(tx, ty; ε)y

)
φlog(x, y; ε, ϕ) =

1
2kτ

∫ 1

t=0
(P2(tx, ty)x + P3(tx, ty)y) =

1
2kτ

χ log(αx2 + y2).

The following lemma shows that φbd is a well-defined function.

Lemma 5.1 If ψ̂, θ̂ ∈ M2,2
γ then for fixed ε and ϕ, the function φbd(x, y; ε, ϕ) is well defined, bounded,

continuous, and approaches a constant ϕ + Φ∞(ε) as |x| → ∞.

Proof. Note that φ is continuous since ψ̂, θ̂ ∈ M2,p
γ ⊂ BC0. Lemma 7.1 guarantees that for large |x| we

have |ψ̂|, |θ̂| 6 C|x|−γ−1. Therefore, the integrals converge as |x| → ∞.

The next four lemmas will help us show that the operator F̂ε,ϕ : D× R3 → R is well defined.

Lemma 5.2 There exists C > 0 so that for all u ∈ Lp
γ with Du ∈ Lp

γ+1, 〈x〉γu ∈ W1,p and,

‖〈x〉γu‖W1,p 6 C‖u‖Lp
γ

+ ‖Du‖Lp
γ+1
.

Proof. We need to show that D(〈x〉γu) ∈ Lp. We compute

D(〈x〉γu) = Du · 〈x〉γ + D〈x〉γ · u = Du · 〈x〉γ + γux(1 + |x|2)
γ−2

2 .

Since Du ∈ Lp
γ+1 ⊂ Lp

γ , we conclude that Du · 〈x〉γ ∈ Lp. Furthermore, since |x|p 6 (1 + |x|2)p/2,

|u · D〈x〉γ| 6 |u||x|〈x〉(γ−2) 6 |u|〈x〉(γ−1) 6 |u|〈x〉γ ∈ Lp.

This implies that D(〈x〉γu) ∈ Lp and we obtain 〈x〉γu ∈ W1,p.

Lemma 5.3 For γ > 0, we have the continuous embeddings M2,2
γ ↪→ W2,2

γ ↪→ W2,2 ↪→ BC0.

Proof. The first embedding is due to Lemma 5.2, the second a consequence of γ > 0, and the last a
classical Sobolev embedding in dimension 2.

Lemma 5.4 For γ > 0 there exists C > 0 such that for all f , g with 〈x〉γ+1 f , 〈x〉γ+1g ∈ W1,p,

‖ f g‖Lp
γ+2
6 C‖〈x〉γ+1 f ‖W1,p‖〈x〉γ+1g‖W1,p .

Proof. By Cauchy-Schwartz,

‖ f g〈x〉(γ+2)‖Lp 6 ‖ f 〈x〉(1+(γ/2))‖L2p‖g〈x〉(1+(γ/2))‖L2p

which proves the lemma using γ > 0 and the Sobolev embedding W1,p ↪→ L2p, in n = 2.

Fredholm properties of the Laplacian imply in particular the following more basic estimate [16].
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Lemma 5.5 [16, Theorem 3.1] If u ∈ Lp
γ and ∆u ∈ Lp

γ+2 then u ∈ M2,p
γ and there exists a constant C

such that
‖u‖M2,p

γ
6 C

(
‖u‖Lp

γ
+ ‖∆u‖Lp

γ+2

)
.

Remark 5.6 Notice that u,w ∈ L2
γ+2 so that ∆s = u+w ∈ L2

γ+2, by the above lemma we have that, within

the closed subsetD ⊂ X, s ∈ M2,2
γ with uniform bounds in terms of s, u,w.

To prove Theorem 4, the following three lemmas establish that each component of the operator F̂ε,ϕ :
D×R3 → R is well defined. Throughout, we use the standing assumptions 0 < γ < 1 and g ∈ W2,2

β , with
β > γ + 2.

Lemma 5.7 The component F̂1 : D× R3 → L2
γ is well defined.

Proof. We can rewrite

F̂1(ξ; ε, ϕ) = ∆s − 2τ2s − ψ −
sψ
τ
− (s + τ)(

1
(2kτ)2 (ψ2 + θ2)) − (s3 + 3s2τ) + εRe [ge−i(kx+φ(ϕ))].

A short calculation shows that ∆s − 2τ2s − ψ = (∆ − 2τ2)ŝ − ψ̂ − c∆P1 is the first component of T̂ , thus
well defined. Consider next the term sψ = (ŝ + cP1)(ψ̂ + cP2).

Notice that ŝψ is in L2
γ since both P2 and ψ̂, are bounded by Lemma 5.3 and ŝ ∈ L2

γ. Since ψ̂ ∈ L2
γ and

since P1 is bounded, ψ̂P1 ∈ L2
γ as well. Notice also that the product P1 · P2 is bounded in compact sets

and behaves like
1
|x|2

for large values of |x|, hence it belongs to L2
γ provided γ < 1. This shows the term

sψ is in the desired space.

Using similar arguments, it is easy to check that the functions ψ2, θ2, s3, s2 and s(ψ2 + θ2) are in L2
γ.

Finally, by Lemma 5.1 we know φ is a bounded continuous function so that we can conclude e−i(kx+φ(ϕ))

is a well defined function in L∞. This implies that the term Re [ge−i(kx+φ(ϕ))] is in L2
γ since g ∈ L2

β ⊂ L2
γ.

Lemma 5.8 The component F̂2 : D× R3 → L2
γ+2 is well defined.

Proof. Since we are trying to find solutions near ξ = 0 we can assume s/τ is close to zero. We can
therefore write

∆ψ + (2k)2 τu
s + τ

= ∆ψ + (2k)2
(
u +

su
τ + su

)
= ∆ψ̂ + (2k)2(û + c∆P2 + (2k)2∂xxP2) + (2k)2 (û + c∂xxP1))(ŝ + cP1)

τ + (û + c∂xxP1))(ŝ + cP1)
.

Notice that the terms ∆ψ̂ + (2k)2û + c[∆P2 + (2k)2∂xxP2], represent the second component of the linear
operator T̂ : D × R → R, hence are well defined. It is now straightforward to see that the remaining
nonlinear terms are contained in L2

γ+2. In terms of localization, the most dangerous term is P1∂xxP1,
which can be bounded as ∫

|P1∂xxP1|
2 〈x〉2(γ+2) 6

∫ ∣∣∣∣∣ 1
r4

∣∣∣∣∣2 r2(γ+2)rdr < ∞,

since γ < 1.
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We next treat the remaining nonlinearities. Since s ∈ L∞, we only need to show that the numerators in
F̂2 are in L2

γ+2. It is not hard to mimic the above arguments to show that the terms uψ and vθ are in L2
γ+2,

so we will treat the term sxψx first. Using the formulas in (4.7) we see that

sxψx = (ŝx + c∂xP1)(ψ̂x + c∂xP2).

By Lemma 5.5 and Remark 5.6 we know that ŝ ∈ M2,2
γ . Therefore, ŝx, ψ̂x ∈ W1,2

γ+1 and we can apply
Lemma 5.4 to conclude that ŝxψ̂x ∈ L2

γ+2. The remaining terms are easily seen to be in the correct space.

Similar arguments show that the functions (sx)2, syψy, sxsy are in the correct space and that, since ψ and
θ are bounded by Lemma 5.3, sx(sxψ + syθ) ∈ L2

γ+2.

Finally, because we are assuming that g is in the space W2,2
β , with β > γ + 2, sx ∈ L2

γ+1, and because the
terms ψ and e−i(kx+φ(ϕ)) are bounded,

−
εsxIm [ge−i(kx+φ(ϕ))]

(s + τ)2 +
εIm [∂x(ge−i(kx+φ(ϕ)))]

s + τ
∈ L2

γ+2.

Here, we used the fact that ψ = (2kτ)φ so that ∂x(ge−i(kx+φ(ϕ))) = [gx − ig(k + ψ/(2kτ))]e−i(kx+φ(ϕ)).

Lemma 5.9 The component F̂3 : D× R3 → L2
γ+2 is well defined.

Proof. The proof is almost identical to the proof of Lemma 5.8 and is omitted here.

Finally, we show

Lemma 5.10 The component F̂4 : D × R3 → W−2,2
γ+2 is well defined. Moreover, the nonlinear part of F̂4

actually belongs to L2
γ+2.

Proof. We can rewrite F̂4 as

∆u − 2τ2u − ψxx −
sψxx

τ
− u

(
ψ

τ
+

1
(2kτ)2 (ψ2 + θ2)

)
− 2sx

(
ψx

τ
+

2
(2kτ)2 (ψxψ + ψyθ)

)

−(s + τ)
(

2
(2kτ)2

(
ψxxψ + ψxyθ + |∇ψ|2

))
− (6s(sx)2 + 3s2u + 6τ(sx)2 + 6τsu) + εRe [∂xx(ge−i(kx+φ(ϕ)))].

Notice that
∆u − 2τ2u − ψxx = ∆û − 2τ2û − ψ̂xx + c∆(∂xxP1),

is just the fourth component of the linear operator T̂ , thus well defined. Furthermore, notice that ψ̂xx ∈

L2
γ+2. Since ∆∂xxP1 behaves like

1
|x|5

for large |x| and is bounded in compact sets, these two term now

also belong to L2
γ+2. The arguments used to show that the remaining nonlinearites are in the space L2

γ+2
are the same as the once used in the above lemmas, we will omit the details here.

Having shown the result for the operator F̂4 it is not hard to see that the operators F̂5, F̂6 : D×R3 → W−2,2
γ+2

are well defined.

Remark 5.11 Since all the nonlinear terms are in L2
γ+2, including ψ̂xx and ∆∂xxP1, then ∆û − (2τ2)û ∈

L2
γ+2. This implies that for the solution, û ∈ W2,2

γ+2. The same observation holds for v̂ and ŵ.
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In the next lemma we show that there exist a neighborhood U of ξ ∈ D × R such that the operator
F̂ε,ϕ : U × R3 → R is smooth.

Lemma 5.12 Let 0 < γ < 1 and g ∈ W2,2
β , with β > γ + 2. Then the operator F̂ε,ϕ : D × R3 → R is of

class C∞ in a neighborhood the origin.

Proof. Most nonlinear terms are defined via superposition (or Nemytskii) operators, via smooth algebraic
functions, that are automatically smooth once well defined. We therefore concentrate on the term ge−iφ

and its derivatives. Recall that
φ(x, y; ε, ϕ) = φbd + φlog,

where

φbd(x, y; ε, ϕ) =ϕ +
1

2kτ

∫ 1

t=0

(
ψ̂(tx, ty; ε)x + θ̂(tx, ty; ε)y

)
φlog(x, y; ε, ϕ) =

1
2kτ

∫ 1

t=0
(P2(tx, ty)x + P3(tx, ty)y) =

1
2kτ

cχ log(αx2 + y2).

In order to show smoothness, we factor

ge−iΦ =
(
g〈xγ+2−β〉

)
· e−iΦbd ·

(
〈xβ−γ−2〉e−iΦlog

)
=: G1 ·G2 ·G3.

Clearly, G1 ∈ L2
γ+2. By Lemma 5.1,

∫
ψ,

∫
θ ∈ L∞, so that G2 ∈ L∞ is bounded as a superposition

operator. It remains to show that G3 is differentiable with values in L∞. This can be readily established,
showing that the derivative with respect to c is

∂cG3 = 〈xβ−γ−2〉e−iΦlogχ log(αx2 + y2),

hence bounded in L∞. Higher derivatives are bounded for the same reasons, which establishes the claim.

6 Expansions and proof of main result

In this last subsection we use Theorem 4 to prove Theorem 1 and derive the expansions for the stationary
solutions to the perturbed Ginzburg-Landau equation near roll patterns.

Proof of Theorem 1. Recall the Ansatz

A(x, y; ε, ϕ) = (
√

1 − k2 + s(x, y; ε, ϕ) + c(ε, ϕ)P1(x, y))e
ikx+iφ(x,y;ε,ϕ)+i c(ε,ϕ)

2k
√

1−k2
P2(x,y)

where Φ was defined in (5.1) and P1, P2 in (3.6). From Theorem 4 we know there exists a neighborhood,
U, of D × R where the operator F̂ε,ϕ is continuously differentiable with invertible derivative at the
origin, ε = 0. The Implicit Function Theorem therefore guarantees the existence of solutions ξ(ε, ϕ) near
ξ(0, ϕ) = 0. In particular, we know that s ∈ W2,2

γ , and ψ, θ ∈ M2,2
γ .

We define
S (x, y; ε, ϕ) =

( √
1 − k2 + s(x, y; ε, ϕ) + c(ε, ϕ)P1(x, y)

)
and

Φ(x, y; ε, ϕ) = kx + φ.

17



Since s(x, y; ε, ϕ) ∈ W2,2
γ , Lemma 5.3 ensures that if s(x, y; ε, ϕ) ∼ O(〈x〉−γ). Also, by definition,

P1(x, y) ∼ O(〈x〉−1), and
lim
x→∞

S (x, y; ε, ϕ) = S∞ =
√

1 − k2.

By Lemma 5.1, φbd → ϕ + Φ∞(ε) for x→ ∞ so that

Φ(x, y; ε, ϕ) − kx −
c(ε, ϕ)

2k
√

1 − k2
log(αx2 + y2)→ Φ∞(ε) + ϕ,

as |x| → ∞.

To find an expression for c(ε, ϕ) we expand ξ = εξ̂ + o(ε). Gathering terms of order ε results in the
system T̂ ξ̂ = f̂ . Inspecting the second component of this system, we find

∆ψ̂ + b∂xxû + ĉ [∆P2 + b∂xxP1] =
1

√
1 − k2

Im [(gx − ikg)e−i(kx+ϕ)].

Taking the scalar product with x and solving for ĉ, we obtain after integration by parts in x,

ĉ =

√
1 − 3k2

π(1 − k2)

"
Im [ge−i(kx+ϕ)].

Hence c(ε, ϕ) = εc1(ϕ) + o(ε) with c1(ϕ) = ĉ.

7 Appendix

We prove that functions in M2,2
γ are spatially localized in a pointwise sense. This result is used in Lemma

5.1 to ensure that phases are well defined.

Lemma 7.1 If f ∈ M2,2
γ then | f (x)| 6 C‖ f ‖M2,2

γ
〈x〉−γ−1 as |x| → ∞.

Proof. Since M2,2
γ is the completion of C∞0 under the norm ‖ · ‖M2,2

γ
, it suffices to show that the result

holds for f ∈ C∞0 . In polar coordinates, we have, up to constants∫
| f (θ,R)|2dθ 6

∫ (∫ R

∞

| fr(θ, s)|ds
)2

dθ =

∫ (∫ R

∞

s−γ−3/2sγ+1| fr(θ, s)|s1/2ds
)2

dθ

6

∫ (∫ R

∞

s−2(γ+3/2)ds
) (∫ R

∞

s2(γ+1)| fr(θ, s)|2sds
)

dθ

. R−2(γ+3/2)+1
∫ ∫ R

∞

s2(γ+1)| fr(θ, s)|2sdsdθ,

which gives
‖ f (·,R)‖L2 . R−γ−1‖∇ f ‖L2

γ+1
. (7.1)

Similarly,∫
| fθ(θ,R)|2dθ 6

∫ (∫ R

∞

| frθ(θ, s)|ds
)2

dθ =

∫ (∫ R

∞

s−γ−5/2sγ+2| frθ(θ, s)|s1/2ds
)2

dθ

6

∫ (∫ R

∞

s−2(γ+5/2)ds
) (∫ R

∞

s2(γ+2)| frθ(θ, s)|2sds
)

dθ

. R−2(γ+5/2)+1
∫ ∫ R

∞

s2(γ+2)| frθ(θ, s)|2sdsdθ.
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This gives
‖ fθ(·,R)‖L2 6 R−γ−2‖ frθ‖L2

γ+2
. (7.2)

Combining (7.1) and (7.2) and using the interpolation inequality [1, Thm 5.9]

‖ f (·,R)‖2∞ 6 ‖ f (·,R)‖L2‖ f (·,R)‖H1 ,

now proves the claim.
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