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ABSTRACT. Functional differential equations with forward and
backward delays arise naturally, for instance, in the study of trav-
elling waves in lattice equations and as semi-discretizations of
partial differential equations (PDEs) on unbounded domains.
Linear functional differential equations of mixed type are typi-
cally ill-posed, i.e., there exists, in general, no solution to a given
initial condition. We prove that Fredholm properties of these
equations imply the existence of exponential dichotomies. Expo-
nential dichotomies can be used in discretized PDEs and in lat-
tice differential equations to construct multi-pulses, to perform
Evans-function type calculations, and to justify numerical com-
putations using artificial boundary conditions.

1. INTRODUCTION

We are interested in linear non-autonomous functional differential equations

(1.1) v′(ξ) =
m∑

j=−m
Aj(ξ)v(ξ + j), ξ ∈ R

of mixed type, where v ∈ Cn, and Aj(ξ) are continuous functions with values
in Cn×n for |j| ≤ m. Before we motivate our interest in this equation and list
a number of applications that we have in mind, we discuss a few properties of
(1.1). The most important feature of (1.1), at least for the purpose of this paper, is
that the associated initial-value problem is ill-posed. To make this statement more
precise, we should first explain in what sense we want to solve (1.1): We say that
a function v(ξ) satisfies (1.1) on an interval J = [a, b], where a = ∞ and b = ∞
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are allowed, if v ∈ L2
loc([a−m, b+m],Cn) ∩H1

loc([a, b],Cn), and (1.1) is met
in L2

loc([a, b],Cn). The initial-value problem associated with (1.1) is given by

(1.2) v′(ξ) =
m∑

j=−m
Aj(ξ)v(ξ + j), v|[−m,m] = φ,

where φ is a given function defined on [−m,m]. Unfortunately, for a given
function φ, there is in general no solution, in the above sense, to (1.2) on any
nontrivial interval that contains ξ = 0. A simple counterexample (see [15]) is
provided by the equation

(1.3) v′(ξ) = v(ξ − 1)+ v(ξ + 1), v|[−m,m] = 1

with v ∈ C. The only function that could possibly be a solution of this initial-
value problem is given by v(ξ) = (−1)k for ξ ∈ (2k−1, 2k+1] with k ∈ N;
this function, however, is not even continuous. Seeking solutions of the form
v(ξ) = eλξ , we see that the characteristic eigenvalue equation associated with
(1.3) is

λ = e−λ + eλ.

This equation has solutions λ ∈ C with Reλ arbitrarily large and also admits
solutions for which −Reλ is arbitrarily large. Therefore, the linear equation (1.3)
does not generate a semiflow on any space that contains all its eigenfunctions. This
explains why the initial-value problem (1.2) associated with (1.1) is ill-posed. In
fact, functional differential equations of mixed type behave quite similar to elliptic
PDEs when considered as initial-value problems. Note also that solving (1.1)
forward or backward in the time variable ξ is equally difficult.

Since we cannot solve (1.2) for all φ, we should therefore find those functions
φ for which a solution to (1.2) exists on either R+ or R−. In particular, we would
expect to be able to solve the linear autonomous equation (1.3) for ξ > 0 for
any initial condition φ that is a superposition of eigenfunctions associated with
stable eigenvalues (i.e., eigenvalues with negative real part). In fact, the resulting
solution should decay to zero exponentially as ξ → ∞. Analogously, we should
be able to solve (1.3) on R− for any initial condition φ that is a superposition
of eigenfunctions associated with unstable eigenvalues (i.e., eigenvalues of posi-
tive real part), and the solution should decay exponentially as ξ → −∞. Using
results from [1] about the characteristic equation, Rustichini [15] proved these
assertions for autonomous equations. His result leads naturally to the question
how large the closure of all eigenfunctions associated with either stable or unstable
eigenvalues is. Indeed, the sum of the resulting closed spaces gives the function
space on which we can construct solutions to (1.1) on either R+ or R−. The dif-
ficulty in determining whether this sum is the entire underlying function space,
i.e., whether the set of eigenfunctions is complete, lies in the problem of excluding
solutions that decay super-exponentially, so-called small solutions. Verduyn Lunel
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[19] gave conditions that guarantee that the set of eigenfunctions associated with
an autonomous functional differential equation is complete.

In this paper, we address the above issues for non-autonomous functional
differential equations of mixed type. The obvious difficulty is that the spaces on
which we can solve (1.1) forward or backward in time will depend on ξ. It is not
apriori clear which spaces will replace the unstable and stable eigenspaces that were
so useful for autonomous equations. It turns out that the correct notion in the
non-autonomous setup are exponential dichotomies. An exponential dichotomy
formalizes the idea of solving (1.1) either forward or backward in ξ for initial
conditions in certain complementary subspaces even though these subspaces will
depend on ξ.

To formulate the definition of exponential dichotomies in the present context,
it is convenient to introduce the following notation, which we shall use frequently.
For a given function v : [−m,∞) → Cn, we define vξ : [−m,m] → Cn via
vξ(η) := v(ξ + η) for η ∈ [−m,m].

Definition 1.1 ([14]). Let J = [a, b] be R+, R− or R. Equation (1.1)
is said to have an exponential dichotomy on the interval J if there exist posi-
tive constants K and κ, and a strongly continuous family of projections P(ξ) :
L2([−m,m],Cn) → L2([−m,m],Cn) such that the following is true for any
φ ∈ L2([−m,m],Cn) and ζ ∈ J.

(i) There exists a unique solution v on [ζ, b] of (1.1) such that vζ = P(ζ)φ.
In addition, vξ ∈ R(P(ξ)) and

‖vξ‖L2([−m,m],Cn) ≤ Ke−κ|ξ−ζ|‖φ‖L2([−m,m],Cn)

for all ξ ≥ ζ with ξ, ζ ∈ J.
(ii) There exists a unique solution v on [a, ζ] of (1.1) such that vζ =

(id−P(ζ))φ. In addition, vξ ∈ N(P(ξ)) and

‖vξ‖L2([−m,m],Cn) ≤ Ke−κ|ξ−ζ|‖φ‖L2([−m,m],Cn)

for all ξ ≤ ζ with ξ, ζ ∈ J.

Exponential dichotomies have been shown to exist in ordinary differential
equations [4], parabolic PDEs [7] and delay equations [6], where the unstable
subspace N(P(ξ)) is always finite-dimensional, and the initial-value problem is
well-posed. In [14], the existence of exponential dichotomies has been established
for elliptic PDEs on unbounded domains. Here, both R(P(ξ)) and N(P(ξ)) are
infinite-dimensional, and the initial-value problem is ill-posed.

Associated with (1.1) is the operator

L : H1(R,Cn) -→ L2(R,Cn), (Lv)(ξ) = dv
dξ
(ξ)−

m∑
j=−m

Aj(ξ)v(ξ + j)
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and its formal adjoint L∗, defined on the same spaces, given by

(L∗w)(ξ) = −dw
dξ
(ξ)−

m∑
j=−m

A∗j (ξ − j)w(ξ − j).

We need the following weak uniqueness assumption.

Hypothesis 1.1. If v is in the null space of L or the adjoint operator L∗ such
that v|[ξ0−m,ξ0+m] = 0 for some ξ0, then v vanishes identically.

Our main result is the following theorem.

Theorem 1.1. If L is a Fredholm operator and if Hypothesis 1.1 is met, then
(1.1) has exponential dichotomies on R+ and on R−.

A weaker but perhaps more explicit version of the above theorem is the fol-
lowing statement.

Theorem 1.2. If (1.1) is asymptotically hyperbolic (see Definition 2.1 below)
and if neither detAm(ξ) nor detA−m(ξ) vanish on any open interval, then (1.1)
has exponential dichotomies on R+ and on R−.

Analogous results have been shown, independently and simultaneously, in
[12].

The existence of exponential dichotomies on R+ and R− has a number of
consequences: for instance, the null space and the orthogonal complement of the
range of L are isomorphic to the spaces R(P+(0)) ∩ N(P−(0)) and (R(P+(0)) +
N(P−(0)))⊥, respectively. In addition, it is possible to characterize the Fredholm
index of L by the difference of relative Morse indices. We refer to [18] for details.

Lastly, we motivate why functional differential equations are interesting and
outline some applications of exponential dichotomies that we intend to pursue in
future work. Linear non-autonomous functional differential equations of mixed
type arise in many different problems. We may, for instance, be interested in
travelling waves of lattice differential equations

∂tuk =
m∑

j=−m
fj(uk+j), k ∈ Z,

where uj = uj(t) for j ∈ Z. A travelling-wave solution is a function ϕ(ξ) such
that, for some wave speed c ∈ R, we have uk(t) = ϕ(k + ct) for t ∈ R and
k ∈ Z. Upon substituting this expression for uk into the above lattice equation,
we obtain

cϕ′(ξ) =
m∑

j=−m
fj(ϕ(ξ + j)), ξ ∈ R,
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where we set ξ = k+ ct. The linearization about the wave ϕ(ξ) is then given by

cv′(ξ) =
m∑

j=−m
Dfj(ϕ(ξ + j))v(ξ + j) =:

m∑
j=−m

Aj(ξ)v(ξ + j)

which is of the form (1.1) provided the wave speed c does not vanish. Note that,
if c = 0, then the above equation is a difference equation. A second example are
semi-discretizations of parabolic PDEs such as

∂tu = D∂2
xu+ f(u), u ∈ Rn, x ∈ R

that admit travelling-wave solutions which connect two, possibly different, homo-
geneous equilibria. Since such equations are often too complicated to allow for a
complete analysis, numerical methods have to be employed to compute travelling
waves and to continue them in parameter space. An important question is then
to which extent the numerical scheme is able to reproduce travelling waves of the
original PDE and whether the stability properties of the wave are retained upon
discretizing. We shall investigate these issues in a simplified setting: instead of
considering a fully discrete numerical scheme, we may study semi-discretizations,
i.e., equations where only the spatial derivatives are replaced by finite difference
approximations. The resulting lattice equations are of the form

∂tu(x, t) =
m∑

j=−m
αju(x+jh, t)+ f(u(x, t)),

where the coefficients αj may depend on the mesh size h. Let ξ := (x + ct)/h,
then a travelling wave of the form u(x, t) =ϕ((x+ct)/h) satisfies the nonlinear
functional differential equation

c
h
ϕ′(ξ) =

m∑
j=−m

αjϕ(ξ + j)+ f(ϕ(ξ)).

We assume that we have found a solution ϕ(ξ) of this equation and consider the
linearization

c
h
v′(ξ) =

m∑
j=−m

αjv(ξ + j)+Df(ϕ(ξ))v(ξ)

about the wave. If the wave speed c ≠ 0 is not zero, we obtain a functional dif-
ferential equation of mixed type as in our first example. Exponential dichotomies
provide a useful tool to investigate such equations. In a nutshell (see [18] for
a more comprehensive discussion), exponential dichotomies allow for a much
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more refined perturbation analysis compared with, for instance, Fredholm prop-
erties. One example where dichotomies are useful is in providing correct choices
of boundary conditions so that (1.1) truncated to an interval (−L, L) with L� 1
is well-posed (see [10] and the references therein). Dichotomies are also useful in
the construction of Evans functions that can be used to investigate linear stability
of travelling waves (see, for instance, [2, 18, 17] and references therein). Lastly,
exponential dichotomies can be used to construct new patterns, such as periodic
or multi-hump waves, from a given travelling wave by using, for example, Lin’s
method [9, 16]. Some of the above issues will be investigated in more detail in a
forthcoming article.

This paper is organized as follows. In Section 2, we formulate (1.1) as an
evolution problem and introduce several operators relevant to that formulation.
In Section 3, we then show the existence of exponential dichotomies for the cor-
responding autonomous equation. The analysis is similar to the one given in
[15] and uses additional results from [19]. Lastly, in Section 4, we consider the
non-autonomous equation for which we prove the existence of exponential di-
chotomies following the strategy in [18].
Acknowledgments. J. Härterich was supported by the Deutsche Forschungs-
gemeinschaft under grant Ha 3008/1-1. B. Sandstede was partially supported by
the National Science Foundation under grant DMS-9971703 and by an Alfred
P. Sloan Research Fellowship.

2. THE OPERATORS L AND T
In this section we describe two linear operators that can be associated with the
linear functional differential equation

(2.1) v′(ξ) =
m∑

j=−m
Aj(ξ)v(ξ + j)

and show how they are related.

2.1. The operators L and L∗. We define the closed and densely defined
linear operator

L : D(L) = H1(R,Cn) -→ L2(R,Cn) ,

(Lv)(ξ) = dv
dξ
(ξ)−

m∑
j=−m

Aj(ξ)v(ξ + j)

associated with equation (2.1). The adjoint operator L∗ of L is given by

(L∗w)(ξ) = −dw
dξ
(ξ)−

m∑
j=−m

A∗j (ξ − j)w(ξ − j).
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It is easily checked that∫∞
−∞
(Lv)(ξ) ·w(ξ)dξ =

∫∞
−∞
v(ξ) · (L∗w)(ξ)dξ

for all v,w ∈ H1(R,Cn), where we denote the scalar product in Cn by a · b =∑n
k=1 akbk for a,b ∈ Cn. The operator L has particularly nice properties if the

coefficients Aj satisfy a certain hyperbolicity condition.

Definition 2.1. The linear functional differential equation (2.1) is called
asymptotically constant if the limits A±j := limξ→±∞Aj(ξ) exist for all j. The
equation is called asymptotically hyperbolic if it is asymptotically constant and if
the characteristic equations

det∆±(µ) := det
( m∑
j=−m

A±j eµj − µ id
)
= 0

associated with the limiting equations at ξ = ±∞ have no solutions µ on the
imaginary axis. If the coefficients do not depend on ξ, then we call (2.1) hyperbolic
if det∆(µ) has no purely imaginary zeros µ.

The following result is due to Mallet-Paret [11].

Proposition 2.1 ([11]). If L is asymptotically hyperbolic, then L is a Fredholm
operator.

2.2. The operator T . A different way of viewing (2.1) is to write it in the
form

(2.2)
dV
dξ
(ξ) =A(ξ)V(ξ)

where, for each fixed ξ ∈ R, we define

A(ξ) : D(A(ξ)) = Y 1 -→ Y ,
(
φ
a

)
7 -→


dφ
dη

A0(ξ)a+
∑

1≤|j|≤m
Aj(ξ)φ(j)


with

Y := L2([−m,m],Cn)× Cn

Y 1 := {(φ,a) ∈ H1([−m,m],Cn)×Cn; φ(0) = a}.
(2.3)

The space Y 1 is well defined since H1([−m,m],Cn) is embedded in
C0([−m,m],Cn). Note also that Y 1 is dense in Y since the set of C1-functions
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φ with φ(0) = a is dense in the set of step functions in the L2-norm. The op-
erator A(ξ) has domain Y 1 and is closed for any fixed ξ. In the case of constant
coefficients, we write A0 instead of A(ξ).

Before we define the operator T , we state the following lemma that we use
below to define the domain of T .

Lemma 2.1. Using the notation I = [−m,m] and (ξ, η) ∈ R×I, we have that
L2(R, L2(I,Cn)) = L2(R×I,Cn). Furthermore, there is a constant C with the follow-
ing property. If φ ∈ L2(R × I,Cn) such that the weak derivative
(∂ξ − ∂η)φ ∈ L2(R× I,Cn) exists, then φ(·, k) ∈ L2(R,Cn) for every fixed k ∈ I
and φ(0, ·) ∈ L2(I,Cn); in addition, we have

‖φ(0, ·)‖L2(I,Cn)+‖φ(·, k)‖L2(R,Cn) ≤ C(‖φ‖L2(R×I,Cn)+‖(∂ξ−∂η)φ‖L2(R×I,Cn)).

Proof. The identity L2(R, L2(I,Cn)) = L2(R × I,Cn) is a consequence of
Fubini’s theorem. Upon introducing the coordinates (ξ̃, η̃) = (ξ+η, η) ∈ R× I,
we see that φ(ξ,η) ∈ L2(R × I,Cn) with (∂ξ − ∂η)φ(ξ, η) ∈ L2(R × I,Cn)
if, and only if, φ̃(ξ̃, η̃) := φ(ξ̃−η̃, η̃) ∈ L2(R,H1(I,Cn)). In particular, φ̃ ∈
L2(R, C0(I,Cn)), and we conclude that φ̃(·, k) ∈ L2(R,Cn) for every fixed k ∈ I.
Hence, φ(ξ, k) = φ̃(ξ+k, k) ∈ L2(R,Cn) for fixed k. Lastly, for any such φ, we
also have thatφ(0, η) = φ̃(η, η) exists for almost every η ∈ I. It is straightforward
to see that the L2-norm of φ̃(η, η) can be bounded by the L2(R× I)-norms of φ
and (∂ξ − ∂η)φ upon using the coordinates (ξ̃, η̃). ❐

Associated with (2.2) is the operator

T : L2(R, Y ) -→ L2(R, Y ), V 7 -→ dV
dξ
(·)−A(·)V(·)

(φ,a) 7 -→
dφ

dξ
− dφ

dη
,
da
dξ
(ξ)−A0(ξ)a(ξ)−

∑
1≤|j|≤m

Aj(ξ)[φ(ξ)](j)


which is considered as an unbounded operator on L2(R, Y ) with domain

(2.4) D(T ) = {(φ,a) ∈ L2(R, Y ); (∂ξ − ∂η)φ ∈ L2(R× I,Cn),
a ∈ H1(R,Cn), [φ(ξ)](0) = a(ξ) ∀ξ}

where we use the notation I = [−m,m]. Note that D(T ) is well-defined owing
to Lemma 2.1. Using again Lemma 2.1, it is not difficult to prove that T is closed
and densely defined.

Note that we have L2(R, Y 1) ∩ H1(R, Y ) ⊂ D(T ). It is tempting to take
L2(R, Y 1) ∩ H1(R, Y ) as the domain of T . The operator T is, however, not
closed if considered with this domain.
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The following lemma shows how the null spaces of the operators L and T are
related.

Lemma 2.2. If a function v ∈ H1(R,Cn) satisfies Lv = 0, then V(ξ) :=
(v|[ξ−m,ξ+m], v(ξ)) satisfies V ∈ D(T ) and T V = 0. Conversely, if V = (φ,a) ∈
D(T ) satisfies T V = 0, then a ∈ H1(R,Cn) satisfies La = 0. In particular,
N(L) � N(T ).

Proof. If v ∈ H1(R,Cn) is a solution to Lv = 0, then v is in fact of class
C∞. To see this, it suffices to show that v ∈ Ck([−`, `],Cn) for arbitrarily large
numbers k and `. By the Sobolev Embedding Theorem, v is in C0 on the in-
terval [−`−mk, `+mk]. Since v satisfies (2.1), it is C1 on the smaller interval
[−`−(k− 1)m, `+(k−1)m]. Inductively one can then show that v is indeed of
class Ck on [−`, `]. As a consequence, V(ξ) := (vξ, v(ξ)) is a classical solution
of (2.2). It remains to check that V is in the domain of T . Since v ∈ H1(R,Cn),
we know that

‖V‖L2(R,Y 1) =
∫
R

∫m
−m
(|vξ(η)|2 + |∂ηvξ(η)|2)dηdξ + ‖v‖H1(R,Cn)

=
∫
R

∫m
−m
(|v(ξ + η)|2 + |v′(ξ + η)|2)dηdξ + ‖v‖H1(R,Cn)

= (2m+ 1)‖v‖H1(R,Cn),

and we conclude that V is in L2(R, Y 1). Note that v ∈ H1(R,Cn) is in the do-
main of the derivative which is the generator of the shift semigroup on L2(R,Cn).
Therefore,

d
dξ
v(ξ + ·) = d

dη
v(ξ + ·).

Hence V is in H1(R, Y ) and therefore indeed in L2(R, Y 1)×H1(R, Y ) ⊂ D(T ).
To show the other direction, assume that V = (φ,a) ∈ D(T ) satisfies T V =

0. It follows from the definition of D(T ) that v(ξ) = a(ξ) = [φ(ξ)](0) is
well-defined and v ∈ H1(R,Cn). It remains to show that a|[ξ−m,ξ+m] = φ(ξ),
i.e., [φ(ξ + η)](0) = [φ(ξ)](η). As in Lemma 2.1, we use the coordinates
(ξ̃, η̃) = (ξ+η, η) ∈ R×I and set φ̃(ξ̃, η̃) := [φ(ξ̃− η̃)](η̃). From d

dξφ =
d
dηφ,

we conclude that φ̃(ξ̃, η̃) = φ̃(ξ̃,0) for almost every ξ̃, and therefore for every ξ̃
as [φ(ξ)](0) is continuous. Hence, [φ(ξ − η)](η) = [φ(ξ)](0) for every ξ and
η, and we conclude that [φ(ξ + η)](0) = [φ(ξ)](η). ❐

2.3. The adjoint operator T ∗. We denote by 〈·, ·〉 the inner product〈(
φ
a

)
,
(
ψ
b

)〉
:=
∫∞
−∞

∫m
−m
φ(ξ,η) ·ψ(ξ,η)dηdξ +

∫∞
−∞
a(ξ) · b(ξ)dξ

on L2(R, Y ).
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Remark 2.1. Let j be an integer with −m ≤ j < m. If ψ ∈
L2(R × [j, j+1],Cn) with weak derivative (∂ξ − ∂η)ψ ∈ L2(R × (j, j+1),Cn),
thenψ(·, j) and ψ(·, j+1) are in L2(R,Cn) by Lemma 2.1. We use the notation
ψ(·, j+) := ψ(·, j) and ψ(·, (j+1)−) := ψ(·, j+1). For convenience, we also
define ψ(·,m+) = ψ(·,−m−) = 0.

Lemma 2.3. The adjoint operator T ∗ is given by

T ∗ : L2(R, Y ) -→ L2(R, Y ),

(ψ,b) 7 -→
(
−dψ

dξ
+ dψ

dη
,−db

dξ
−A∗0 (ξ)b +ψ(·,0−)−ψ(·,0+)

)

with

D(T ∗) = {(ψ,b) ∈ L2(R, Y ); (∂ξ − ∂η)ψ ∈ L2(R× (j, j+1),Cn)

∀j with −m ≤ j < m,

b ∈ H1(R,Cn), ψ(ξ, j−)−ψ(ξ, j+) = A∗j (ξ)b(ξ)
∀ ξ and 0 < |j| ≤m}

(see Remark 2.1 for the notation). Furthermore, T ∗(ψ,b) = 0 if, and only if,
L∗b = 0.

Proof. The domain D(T ∗) of the adjoint operator T ∗ is given by

D(T ∗) = {(ψ,b) ∈ L2(R, Y );

∃(ψ∗, b∗) ∈ L2(R, Y ) : 〈T (φ,a), (ψ,b)〉 = 〈(φ,a), (ψ∗, b∗)〉
∀(φ,a) ∈ D(T )},

in which case T ∗(ψ,b) := (ψ∗, b∗). Thus, we consider the equation

(2.5)
∞∫
−∞

m∫
−m

(
dφ
dξ

− dφ
dη

)
·ψdηdξ

+
∞∫
−∞

da
dξ

−A0(ξ)a−
∑
j≠0

Aj(ξ)φ(ξ, j)

 · b dξ

=
∞∫
−∞

m∫
−m
φ ·ψ∗ dηdξ +

∞∫
−∞
a · b∗ dξ.
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Upon setting a = 0, so that φ(ξ,0) = 0, we obtain

(2.6)
∞∫
−∞

m∫
−m

(
dφ
dξ

− dφ
dη

)
·ψdηdξ −

∞∫
−∞

∑
j≠0

Aj(ξ)φ(ξ, j) · b dξ

=
∞∫
−∞

m∫
−m
φ ·ψ∗ dηdξ.

If we restrict to test functions φ with φ(ξ, j) = 0 for all integers j, we see that
ψ∗ = (∂η−∂ξ)ψ in L2(R× (j, j+1),Cn) for all j with −m ≤ j < m. Note that
this definesψ∗ uniquely in L2(R×[−m,m],Cn). Using the notation introduced
in Remark 2.1 and considering arbitrary test functions φ with φ(ξ,0) = 0, we
obtain

∞∫
−∞

m∫
−m

(
dφ
dξ

− dφ
dη

)
·ψdηdξ

=
∞∫
−∞

m∫
−m
φ ·ψ∗ dηdξ +

m∫
−m

∑
j≠0

φ(ξ, j) · (ψ(ξ, j−)−ψ(ξ, j+)) dη,

and conclude that (2.6) is met for all φ with φ(ξ,0) = 0 provided

ψ(·, j−)−ψ(·, j+) = A∗j (·)b(·)

in L2(R,Cn) for all j ≠ 0. We return to (2.5) which, based on the results estab-
lished above, reduces to

∫m
−m
φ(ξ,0) · (ψ(ξ,0−)−ψ(ξ,0+))dη

+
∫∞
−∞

(
da
dξ

−A0(ξ)a
)
· b dξ =

∫∞
−∞
a · b∗ dξ

and therefore to∫∞
−∞

da
dξ

· b dξ =
∫∞
−∞
a · (b∗ +A∗0 (ξ)b −ψ(ξ,0−)+ψ(ξ,0+))dξ

for all a ∈ H1(R,Cn), since φ(·,0) = a for every (φ,a) ∈ D(T ). This shows
that b ∈ H1(R,Cn) and

b∗ = −db
dξ

−A∗0 b +ψ(·,0−)−ψ(·,0+).
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Lastly, the proof that the null spaces of T ∗ and L∗ are isomorphic is quite anal-
ogous to the proof of Lemma 2.2. The following argument is the key. Suppose
that (ψ,b) ∈ D(T ∗) with T ∗(ψ,b) = 0. Using that (∂ξ − ∂η)ψ = 0 and that
ψ(ξ, j−) = ψ(ξ, j+) + A∗j (ξ)b(ξ) for j > 0 with ψ(ξ,m−) = A∗m(ξ)b(ξ), it
follows inductively that

ψ(ξ, j−) =
m∑
k=j
A∗k (ξ − k+ j)b(ξ − k+ j)

for j > 0. Hence,

ψ(ξ,0+) = ψ(ξ−1, 1−) =
m∑
j=0

A∗j (ξ − j)b(ξ − j).

Similarly, we obtain

ψ(ξ,0−) = ψ(ξ+1, −1+) = −
−m∑
j=0

A∗j (ξ − j)b(ξ − j)

and therefore

db
dξ

= −A∗0 (ξ)b +ψ(·,0−)−ψ(·,0+) = −A∗0 (ξ)b −
m∑

j=−m
A∗j (ξ − j)b(ξ − j).

We omit the remaining details. ❐
As a consequence, T is Fredholm whenever L is.

Lemma 2.4. If L is Fredholm with index i, then T is Fredholm with the same
index i.

Proof. On account of Lemma 2.2 and Lemma 2.3, we have dimN(L) =
dim N(T ) and dim N(L∗) = dim N(T ∗). To show that the range of T is closed,
assume that T (φn,αn) → (ψ,β) is a convergent sequence in R(T ). Define
vn(ξ) := φn(ξ)(0) = αn(ξ) which gives a sequence (vn)n∈N in H1(R,Cn).
The sequence (Lvn) converges in L2(R,Cn) to β. Since R(L) is closed, we know
that Lvn → Lv∞ for some v∞ ∈ H1(R,Cn). Lemma 2.2 implies that (ψ,β) =
T (φ∞, α∞) for φ∞(ξ) := v∞|[ξ−m,ξ+m] and α∞ := v∞. Thus, R(T ) is closed,
and we conclude that R(T ∗) is also closed [8, Theorem IV.5.13]. In addition, we
then have codimR(L) = codimR(T ) since

codimR(L) = dim N(L∗) = dim N(T ∗) = codimR(T )

by the arguments at the beginning of the proof. ❐
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3. THE CONSTANT-COEFFICIENT OPERATOR A0

For given matrices Aj with |j| ≤m, consider the constant-coefficient operator

(3.1) A0 : Y -→ Y ,
(
φ
a

)
7 -→


dφ
dη

A0a+
∑

1≤|j|≤m
Ajφ(j)


which is densely defined with domain D(A0) = Y 1 (see (2.3)). The characteristic
equation associated with A0 is det∆(µ) = 0 where

∆(µ) :=
m∑

j=−m
Ajejµ − µ id .

We are interested in proving the existence of exponential dichotomies for the equa-
tion

dV
dξ

=A0V,

since this equation with constant coefficients serves as a reference equation for the
more general case that we consider in Section 4 below. To prove the existence
of exponential dichotomies for equations with constant coefficients, we first show
that A0 has only point spectrum and provide estimates for its resolvent. After-
wards, we establish in Section 3.2 the completeness of eigenfunctions and proceed
then in Section 3.3 with the construction of exponential dichotomies in a fashion
similar to Rustichini [15] who proved the existence of dichotomies for slightly different
operators in C0([−m,m],Cn).

3.1. Spectrum, and resolvent estimates. We begin by establishing that the
spectrum of A0 consists entirely of eigenvalues.

Lemma 3.1. The operatorA0 has only point spectrum. Moreover, µ ∈ C is in the
spectrum of A0 if, and only if, det∆(µ) = 0. If µ is an eigenvalue, the corresponding
eigenfunction is of the form (φ,a) with a ∈ Cn and φ(η) = aeηµ.

Proof. To determine the spectrum and the resolvent of A0 we have to discuss
the equation

(A0 − µ)
(
φ
a

)
=
(
ψ
b

)
where ψ ∈ L2([−m,m],Cn) and b ∈ Cn. This equation is equivalent to

dφ
dη

− µφ = ψ

(A0 − µ)a+
∑

1≤|j|≤m
Ajφ(j) = b.
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Solving the first equation by the variations-of-constants formula shows that

φ(η) = eηµφ(0)+
∫ η

0
e(η−σ)µψ(σ)dσ.

Substituting this expression for φ into the second equation and exploiting that
φ(0) = a, we get

∆(µ)a = b −∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ.

Therefore, for any µ with det∆(µ) ≠ 0, i.e., for any µ that is not in the point
spectrum of A0, the resolvent of A0 is given by

φ(η) = eηµ∆(µ)−1

b −∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ

(3.2)

+
∫ η

0
e(η−σ)µψ(σ)dσ

a = ∆(µ)−1

b − ∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ

 . ❐

For later use, we derive estimates for the resolvent of A0. Rustichini [15]
proved similar estimates for linear operators associated with constant-coefficient
equations considered in C0([−m,m],Cn).

Lemma 3.2. Fix a constant κ > 0. There is then a constant M > 0 such that,
for any µ with det∆(µ) ≠ 0 and |Reµ| > κ, we have

‖(A0 − µ)−1‖L(Y) ≤ M
(

em|Reµ|

|Reµ| + ‖∆(µ)−1‖e2m|Reµ|

|Reµ|

)
.

Proof. We have shown that the equation

(A0 − µ)
(
φ
a

)
=
(
ψ
b

)
∈ Y

has the solution

φ(η) = eηµ∆(µ)−1

b − ∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ

+ ∫ η
0

e(η−σ)µψ(σ)dσ

a = ∆(µ)−1

b − ∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ





Linear Non-autonomous Functional Differential Equations 1095

whenever det∆(µ) ≠ 0 with ∆(µ) = ∑mj=−mAjejµ − µ id. Note that

∣∣∣∣∫ y
0

e2(y−σ)Reµ dσ
∣∣∣∣1/2

≤ e|yReµ|√
2|Reµ| .

Using this inequality in combination with Hölder’s inequality, we find that

|a| ≤ ‖∆(µ)−1‖
|b| + ∑

j≠0

‖Aj‖
e|jReµ|√
2|Reµ|‖ψ‖L2


≤ ‖∆(µ)−1‖

(
|b| +M1

em|Reµ|√
2|Reµ|‖ψ‖L2

)

≤ ‖∆(µ)−1‖
(

1+M1
em|Reµ|√
2|Reµ|

)∥∥∥∥∥
(
ψ
b

)∥∥∥∥∥
Y

where
M1 := 2m max

−m≤j≤m
‖Aj‖.

The same estimate appears when we bound the L2-norm of φ:

‖φ‖L2 ≤ ‖eηµ‖L2‖∆(µ)−1‖
(

1+M1
em|Reµ|√
2|Reµ|

)∥∥∥∥∥
(
ψ
b

)∥∥∥∥∥
Y
+
∥∥∥∥∥ e|ηReµ|√

2|Reµ|

∥∥∥∥∥
L2

‖ψ‖L2

≤ em|Reµ|√
2|Reµ|‖∆(µ)−1‖

(
1+M1

em|Reµ|√
2|Reµ|

)∥∥∥∥∥
(
ψ
b

)∥∥∥∥∥
Y
+ em|Reµ|

|Reµ| ‖ψ‖L2 .

For |Reµ| > κ, this implies the desired inequality. ❐

Using results of Bellman and Cooke [1], Rustichini demonstrated the follow-
ing statement on the location of zeros of ∆(µ).

Lemma 3.3 ([15, Lemma 3.2]). Assume that det(A−mAm) ≠ 0, then the
following is true.

(i) For any κ > 0, there exists a constant M(κ) such that | Imµ| ≤ M(κ) for any
zero µ of ∆(µ) with |Reµ| ≤ κ. In particular, if there are no zeros of ∆(µ)
on the imaginary axis, then there is a strip {µ; |Reµ| ≤ κ} that contains no
eigenvalues of A0.

(ii) There exists a positive constant κ̃ such that all zeros of ∆ are contained in the
union W+ ∪W− where

W± :=
{
µ ∈ C; |Reµ| > κ,

∣∣∣∣Re(µ ± 1
m

logµ)
∣∣∣∣ ≤ κ̃} .
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(iii) There exists a constant C > 0 such that

‖∆(µ)−1‖ ≤ Ce−m|Reµ|

along the curves |Re(µ ± (1/m) logµ)| = κ̃, that is, along curves where
|µ|e±m|Reµ| is constant.

3.2. Completeness. An important property, which is not at all obvious for
non-selfadjoint operators such as A0, is completeness, i.e., the property that the
closure of the linear space spanned by the generalized eigenfunctions of A0 is the
entire underlying function space Y . We demonstrate thatA0 is complete provided
that the matrices A−m and Am are not singular.

Theorem 3.1. Consider the operator A0 defined in (3.1). Assume that A0 has
no spectrum on the imaginary axis and that det(A−mAm) 6= 0. Let Eu be the closure
in Y of the sum of generalized eigenspaces to all eigenvalues with positive real part.
Similarly, let Es be the closure of the sum of the generalized eigenspace corresponding
to eigenvalues with negative real part. We then have Eu ⊕ Es = Y .

Remark 3.1. An analogous statement holds if the spectrum has a center part,
i.e., in the situation that there are eigenvalues on the imaginary axis.

Our proof of Theorem 3.1 is based on a characterization of completeness
given by Verduyn Lunel in [19] (see Lemma 3.8 below). We begin by recalling
some facts from complex analysis.

Definition 3.1. Let X be a complex Banach space. An entire function F :
C→ X is said to be of exponential type E(F) if

lim sup
r→∞

1
r

log max
0≤θ≤2π

‖F(reiθ)‖ =: E(F) <∞

exists.

In the following proposition, we summarize some properties of entire func-
tions of exponential type.

Lemma 3.4. Let F1, F2 : C → C be entire functions of exponential type which
are polynomially bounded in the closed right half-plane Reµ ≥ 0. We then have
E(F1F2) = E(F1)+E(F2). If the quotient F1/F2 is an entire function, then E(F1/F2) =
E(F1)− E(F2).

Note that the same holds for entire functions which are bounded in the left
half-plane. This symmetry will allow us later to relax some conditions. The fol-
lowing lemma will prove useful below.

Lemma 3.5. If F : C → C is an entire function of exponential type that satisfies

lim sup
r→∞

1
r

log |F(±ir)| = 0 and |F(µ)| ≤ M for µ ∈ R,
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then F is constant.

Proof. The assertion is a consequence of [3, Thm. 6.2.4], which is a theo-
rem by Duffin and Schaeffer [5], applied separately to F(µ) and F(−µ) with µ
restricted to the upper half-plane in conjunction with Liouville’s Theorem. ❐

Using the identity

∆(µ)−1 = 1
det∆(µ) cof ∆(µ),

where cof ∆(µ) is the matrix of cofactors, we can rewrite the solution of the equa-
tion

(A0 − µ)
(
φ
a

)
=
(
ψ
b

)

given in (3.2) as

φ(η) = eηµ

det∆(µ) cof ∆(µ)
b − ∑

j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ

(3.3)

+
∫ η

0
e(η−σ)µψ(σ)dσ

a = cof ∆(µ)
det∆(µ)

b − ∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ

 .
It is not hard to see that some of the functions involved in the above expression
are entire functions of exponential type.

Lemma 3.6. The exponential type of det∆(µ) ismn if, and only if, detA−m ≠
0 or detAm ≠ 0. In this case the exponential type of each entry of the cofactor matrix
cof ∆(µ) is m(n− 1).

Moreover, if detA−m ≠ 0, then e−mnµ det∆(µ) is of exponential type 2mn and
bounded in the right half-plane, while the entries of e−m(n−1)µ cof ∆(µ) are bounded
in the right half-plane and have exponential type 2m(n− 1).

Similarly, if detAm ≠ 0, then emnµ det∆(µ) is of exponential type 2mn and
bounded in the left half-plane, while the entries of em(n−1)µ cof ∆(µ) are bounded in
the left half-plane and have exponential type 2m(n− 1).

Proof. The term det∆(µ) is a linear combination of terms of the form µqejµ
where 0 ≤ q ≤ n and −mn ≤ j ≤ mn. This implies that the exponential type
of det∆(µ) cannot be greater than mn. The coefficient of emnµ is detAm, while
the coefficient of e−mnµ is detA−m. If at least one of those coefficients is nonzero,
then the definition of exponential type with µ restricted to the real line shows that
E(det∆) = mn. On the other hand, the exponential type is strictly less than
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mn if both detA−m and detAm vanish. Similar arguments apply to the entries of
cof ∆(µ). Note that, if detA±m ≠ 0, then each sub-determinant of A±m does not
vanish either. The remaining estimates can be obtained by completely analogous
arguments. ❐

In view of Lemma 3.5 it is also important to control the behavior of the
resolvent along the imaginary axis.

Lemma 3.7. We have the following asymptotic behavior on the imaginary axis:

lim
r→∞

det∆(±ir)
rn

= 1

lim
r→∞

(cof ∆(±ir))kk
rn−1 = 1 for k = 1,2, . . . , n

lim
r→∞

(cof ∆(±ir))kl
rn−2 = (−1)k+l for k ≠ l.

Proof. These relations are simple consequences of the fact that along the
imaginary axis the polynomial terms dominate the exponential terms. ❐

We use the following characterization of non-completeness.

Lemma 3.8 ([19, Lemma 3.2]). If B : X → X is an unbounded operator with
meromorphic resolvent, then the system of eigenfunctions and generalized eigenfunc-
tions is not complete if, and only if, there exists a y∗ ∈ X∗ with y∗ ≠ 0 such that the
function

µ 7 -→ 〈y∗, (B − µ)−1x〉
is entire for every fixed x ∈ X.

We will show that no such y∗ exists in our situation. The explicit form of
the resolvent (A0 − µ)−1 shows that it is indeed a meromorphic function so that
Lemma 3.8 applies to A0.

Proof of Theorem 3.1. Assume that the system of eigenvectors and generalized
eigenvectors of A0 is not complete. Applying Lemma 3.8 and the Riesz represen-
tation theorem to (3.3), we see that there are (φ,a) ∈ Y such that, for every fixed
(ψ,b) ∈ Y , the function〈(
φ
a

)
, (A0 − µ)−1

(
ψ
b

)〉

= a · 1
det∆(µ) cof ∆(µ)

b − ∑
j≠0

Aj
∫ j

0
e(j−σ)µψ(σ)dσ


+
∫m
−m
φ(η) · 1

det∆(µ) cof ∆(µ)
eηµb −

∑
j≠0

Aj
∫ j

0
e(η+j−σ)µψ(σ)dσ

 dη +
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+
∫m
−m
φ(η) ·

(∫ η
0

e(η−σ)µψ(σ)dσ
)

dη

is entire. In particular, this is true for ψ = 0 for which the above expression
reduces to〈(

φ
a

)
, (A0 − µ)−1

(
0
b

)〉
= a · 1

det∆(µ) cof ∆(µ)b
+
∫m
−m
φ(η) · 1

det∆(µ) cof ∆(µ)eηµb dη.

If the right-hand side defines an entire function for all b ∈ Cn, then each compo-
nent Fk(µ) of

F(µ) := a · cof ∆(µ)
det∆(µ) +

∫m
−m
φ(η) · cof ∆(µ)

det∆(µ)eηµ dη

is an entire function. We prove that this implies that φ = 0 which leads to a
contradiction.

We first show that each Fk(µ) satisfies the assumptions of Lemma 3.5 with
c = 0. Note that, since detA−m ≠ 0, by Lemma 3.6 both the numerator and
the denominator of e−mnµFk(µ) are entire functions of exponential type 2mn
which are bounded in the right half-plane. Assuming that Fk is itself entire, we
can conclude from Lemma 3.4 that Fk is of exponential type 0. Regarding the
behavior of Fk along the imaginary axis, Lemma 3.7 shows that Fk(ir) converges
to 0 for r → ±∞. This implies directly the weaker statement

lim sup
r→∞

1
r

log |Fk(±ir)| ≤ 0

which is used in Lemma 3.5. The last hypothesis that needs to be checked is the
boundedness on the real axis. Since by assumption F is an entire function, we
only need to be concerned about the behavior for µ → ±∞. Since detA−m ≠ 0
and detAm ≠ 0, we conclude that

|det∆(µ)| ≥ Cemn|µ|

for some constant C and |µ| sufficiently large. On the other hand, cof ∆(µ) is of
exponential type m(n− 1), whence we can estimate∣∣∣∣∫m−mφ(η) · cof ∆(µ)eηµb dη

∣∣∣∣ ≤ ∣∣∣∣∫m−mφ(η)em(n−1)|µ|em|µ|b dη
∣∣∣∣

which implies that Fk(µ) is uniformly bounded for large |µ|.
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Hence, Lemma 3.5 implies that each Fk is constant. Using the behavior along
the imaginary axis, we conclude immediately that this constant is zero so that

Fk(µ)det∆(µ) = a · cof ∆(µ)+ ∫m
−m
φ(η) · cof ∆(µ)eηµ dη = 0.

This implies that

−a =
∫m
−m
φ(η)eηµ dη =

∫ 2m

0
φ(η−m)emµeηµ dη

is a constant independent of µ. In other words, if we extend φ to R by setting
φ(η) = 0 for |η| > m, then the constant function −a would be the Laplace
transform of the function φ(η−m)emµ which is in L2 and has compact support.
However, as the Laplace of a function with compact support, −a would have to
be integrable along each line Reµ = const. This would imply a = 0, and by
inverse Laplace transform φ = 0. Therefore, by Lemma 3.8, the operator A0 has
a complete system of eigenvectors and generalized eigenvectors. ❐

3.3. Exponential dichotomies. We are now in a position to establish the
existence of exponential dichotomies for the equation

(3.4)
dV
dξ

=A0V

with constant coefficients. We assume that A0 is hyperbolic, i.e., that ∆(µ) ≠ 0
for all µ ∈ iR. Recall from Lemma 3.3 that the distance from the spectrum of A0

to the imaginary axis is strictly positive. Let Es and Eu be the closure in Y of the
generalized eigenspaces associated with all eigenvalues of A0 that have negative
and positive real part, respectively.

Proposition 3.1. Assume that det(A−mAm) ≠ 0, and choose κ > 0 such that
κ is smaller than the distance from the spectrum of A0 to the imaginary axis. There
exists then a strongly continuous semigroup Φs(ξ) : Es → Es defined for ξ ≥ 0 and a
constant K such that Φs(0) = id and

‖Φs(ξ)‖L(Y) ≤ Ke−κξ.

For any V0 ∈ Es ∩ Y 1, the function V(ξ) = Φs(ξ)V0 is differentiable for ξ > 0
and satisfies (3.4) with V(0) = V0. Analogous statements hold for Φu(ξ) : Eu → Eu

defined for ξ ≤ 0.

Note that, for V0 ∈ Es, the function V(ξ) = Φs(ξ)V0 is a mild solution of
(3.4), i.e., it satisfies the integral equation

V(ξ) = V0 +
∫ ξ

0
A0V(ζ)dζ

for all ξ ≥ 0.
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Proof. It suffices to prove the statement for Φs(ξ). We begin by constructing
semigroups on the subspace Es which is defined as the sum of all generalized
eigenspaces of eigenvalues µ of A0 with Reµ < 0.

We construct the semigroup Φs via an integral representation. We begin by
choosing curves Γ1 and Γ2 in C by

Γ1 :=
{
µ ∈ C : Re

(
µ + 1

m
logµ

)
= κ̃, Imµ < 0, Reµ ≤ −κ

}
Γ2 :=

{
µ ∈ C : Re

(
µ + 1

m
logµ

)
= κ̃, Imµ > 0, Reµ ≤ −κ

}

where κ̃ has been defined in Lemma 3.3. Note that Γ1 and Γ2 can be parametrized
by µ = x+ iy(x) where y ′(x) = O(e−mx) as x → −∞ (see [15, p. 140]). Lastly,
the curve Γ3 joins Γ1 and Γ2 along the line Reµ = −κ. By Lemma 3.3, the curveΓ := Γ1 ∪ Γ2 ∪ Γ3 lies to the right of the negative part of the spectrum.

For V0 ∈ Es and ξ0 > 2m, we have∥∥∥∥∥ 1
2π i

∫
Γ1 eµξ0(A0 − µ)−1V0 dµ

∥∥∥∥∥
Y

≤ 1
2π

∫
Γ1 eξ0 Reµ‖(A0 − µ)−1‖dµ ‖V0‖Y

≤ 1
2π

∫
Γ1 eξ0 ReµM

(
em|Reµ|

|Reµ| + Ce−m|Reµ| e
2m|Reµ|

|Reµ|

)
dµ ‖V0‖Y

≤ 1
2π

∫ 0

−∞
eξ0xe−mxM

1+ C
|x| e−mx dx ‖V0‖Y

= K(ξ0)‖V0‖Y

where we used the above parametrization of Γ1 to evaluate the line integral. Note
that the last integral converges for ξ0 > 2m. Since the same calculation applies to
the integral along Γ2, we can define an operator Φs(ξ) on Es for ξ ≥ ξ0 > 2m by

(3.5) Φs(ξ)V0 := 1
2π i

∫
Γ eµξ(A0 − µ)−1V0 dµ.

In particular, for ξ ≥ ξ0 > 2m, we have

(3.6) ‖Φs(ξ)V0‖Y ≤
∥∥∥∥ 1

2π i

∫
Γ eµξ(A0 − µ)−1V0 dµ

∥∥∥∥ ≤ e−κξK(ξ0)eκξ0‖V0‖Y

for some K(ξ0) ≥ 1, which gives exponential decay for ξ ≥ ξ0 > 2m. Note that,
for V0 ∈ Es ∩ Y 1, the function V(ξ) = Φs(ξ)V0 satisfies (3.4) for ξ > 2m with
V(0) = V0 (see [13]).
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Next, we define a filtration of Es by finite-dimensional generalized eigenspaces
Es
j ⊂ Y 1 with j ∈ N (see [15]). For any V0 ∈ Es

j , we can readily solve (3.4)
on R+ and get a solution V(ξ) that is differentiable with values in Y . On the
interval [ξ0,∞), the solution V(ξ) coincides with Φs(ξ)V0 as defined in (3.5). In
particular, with V0 = (φ,φ(0)) and V(ξ) = (vξ, v(ξ)), the function v(ξ) is a
solution of

(3.7) v′(ξ) =
m∑

j=−m
Ajv(ξ + j)

for ξ ≥ 0 with v|[−m,m] = φ. Hence, using (3.6), we obtain the L2-estimate

(3.8) ‖v‖L2([m+ε,3m+ε]) ≤ K(2m+ ε)‖φ‖L2

for any 0 < ε < 1/2. Our goal is to estimate the solution v in L2([m,m+ ε]) in
terms of the L2-norm of the initial condition φ. Let C1 be a bound for the norms
of the matrices Aj . Using that v satisfies (3.7), we then get the H1-estimate

‖v‖H1([m+ε,m+2ε]) ≤mC1(1+K(2m+ ε))‖φ‖L2 ,

and finally

(3.9) |v(m+ ε)| ≤ C2(1+K(2m+ ε))‖φ‖L2

by Sobolev’s embedding theorem for some C2 that may depend on ε. Multiplying
(3.7) by v(ξ), we obtain

v′(ξ) · v(ξ) = A0v(ξ) · v(ξ)+
∑
j≠0

Ajv(ξ + j) · v(ξ)

and therefore

1
2

d
dξ
|v(ξ)|2 ≤ C1|v(ξ)|2+

∑
j≠0

C1|v(ξ+j)| |v(ξ)| ≤ C3|v(ξ)|2+
∑
j≠0

C1|v(ξ+j)|2.

Integrating this inequality over [ξ,m+ ε] with ξ ∈ [m,m+ ε] and ε ≤ 1/2, we
obtain

|v(ξ)|2 ≤ |v(m+ ε)|2 +
∫m+ε
ξ

C3|v(ζ)|2 +
∑
j≠0

C1|v(ζ + j)|2
 dζ

≤ |v(m+ ε)|2 +
∫m+ε
ξ

C3|v(ζ)|2 +
∑
j<0

C1|φ(ζ + j)|2
 dζ + C4‖φ‖2

L2

≤ C(ε)‖φ‖2 +
∫m+ε
ξ

C3|v(ζ)|2 dζ
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where we used that v(ξ + j) = φ(ξ + j) for j < 0 and exploited the estimates
(3.8) and (3.9). Using Gronwall’s inequality, we get

(3.10) ‖v‖2
L2([m,m+ε]) ≤ C̃‖φ‖2

Y .

In summary, from (3.6) and (3.10), we finally conclude that

(3.11) ‖vξ‖L2([−m,m]) ≤ K‖φ‖Y

for all ξ ≥ 0, where v(ξ) is the solution of (3.7) with initial conditionφ associated
with a given V0 = (φ,φ(0)) ∈ Es

j . Note that the constant K that appears in (3.11)
does not depend on j (and not on V0). In addition, we have

(3.12) ‖vξ‖H1([−m,m]) ≤ CKe−κξ‖φ‖Y

for ξ ≥m by using (3.7) and (3.6).
Having established these uniform estimates on Es

j , it remains to extend the
semigroup Φs(ξ) from Es

j to the closure Es, while maintaining the estimates (3.6).
This can be done in a straightforward manner by approximating initial conditions
in Es by elements in Es

j in the L2-sense and using compactness properties implied
by theH1-estimate (3.12) on any given bounded interval in ξ. We omit the details
as they are similar (and in fact easier) than those given in [15]. ❐

4. FREDHOLM PROPERTIES OF T IMPLY THE EXISTENCE OF
DICHOTOMIES

In this section, we prove that the non-autonomous equation (2.1) has an expo-
nential dichotomy. The arguments are similar to those used in [18] in the case
of modulated travelling waves. For this reason, we give an outline of the proof
and provide details only where the arguments for forward-backward delay equa-
tions are different. The main strategy is to compare the non-autonomous operator
with the constant-coefficient operator for which the existence of exponential di-
chotomies has been shown in the previous section.

After extending the operator T in Section 4.1 to a larger function space, we
prove Theorem 1.1 in Sections 4.2 and 4.3, and Theorem 1.2 in Section 4.4.

4.1. The extension S of T . We consider the operator

T : L2(R, Y ) -→ L2(R, Y ), V 7 -→ dV
dξ

−AV

with domain D(T ) given in (2.4). The adjoint T ∗ of T is also densely defined in
L2(R, Y ) with domain D(T ∗) given in Lemma 2.3. Alternatively, we can consider
T ∗ as a bounded operator, denoted by T̂ ∗, from D(T ∗) to L2(R, Y ). Here, we
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consider D(T ∗) as a Banach space equipped with the graph norm. We denote by

S the adjoint operator
(
T̂ ∗

)∗
of T̂ ∗, so that

S : L2(R, Y ) -→ D(T ∗)∗.

Note that S restricted to D(T ) coincides with T . We remark that the notation
(T ∗)ad instead of S is used in [18].

By definition, the equation SU = G means that (T ∗W,U) = (W,G) for all
W ∈ D(T ∗). The brackets denote the duality pairing of D(T ∗) and D(T ∗)∗.
In other words, SU = G is a shortcut for

−
∫∞
−∞
〈∂ξW +A(ξ)∗W,U〉Y dξ =

∫∞
−∞
〈W,G〉Y dξ, ∀W ∈ D(T ∗)

where the scalar products 〈·, ·〉Y are interpreted in the sense of distributions.

Lemma 4.1. Assume that T is Fredholm, then S is also Fredholm with the same
index. Furthermore, N(S) = N(T ).

Proof. The statements are consequences of [8, Section III §5.5 on p. 168]
and [8, Section IV §5.3 on p. 236]. ❐

4.2. T is invertible. It is convenient to consider first the case that T is in-
vertible before proceeding to the more general case that T is only Fredholm.

Lemma 4.2 ([18, Lemma 5.2]). Assume that T is invertible. For any ξ0 ∈
R and any G0 ∈ Y , define G(ξ,η) := G0(η)δ(ξ − ξ0) where δ denotes the δ-
distribution. There is then a unique solution U ∈ L2(R, Y ) of the equation

SU = G.

The restrictions of U to (−∞, ξ0] and [ξ0,+∞) belong to C0((−∞, ξ0], Y ) and
C0([ξ0,+∞), Y ), respectively. The limits U+(ξ0) := limξ↘ξ0 U(ξ) and U−(ξ0) :=
limξ↗ξ0 U(ξ) exist and satisfy the jump condition U+(ξ0)− U−(ξ0) = G0. In addi-
tion, we have the estimate

‖U‖L∞(R,Y ) + ‖U‖L2(R,Y ) ≤ C|G0|Y
where the constant C is independent of G0.

Proof. Note that the equation SU = G is well-defined since G ∈ D(T )∗ by
Lemma 2.1. Without loss of generality, let ξ0 = 0.

The proof is based on the comparison with an appropriate reference equation.
Choose matrices Aref

j for 0 ≤ |j| ≤m such that det(Aref−mAref
m ) ≠ 0 and such that

det∆(µ) ≠ 0 for all µ ∈ iR where

∆(µ) = m∑
j=−m

Aref
j ejµ − µ id .
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Define

Aref :

(
φ
a

)
7 -→


dφ
dη

Aref
0 a+

∑
1≤|j|≤m

Aref
j φ(j)


so that A0 is hyperbolic. We write T as

T = Tref +B

where Tref = d
dξ −Aref and

B(ξ) =Aref −A(ξ) :

(
φ
a

)
7 -→


0

(Aref
0 −A0(ξ))a+

∑
1≤|j|≤m

(Aref
j −Aj(ξ))φ(j)

 .
The strategy is to first seek a solution V ∈ L2(R, Y ) of the reference equation
SrefV = G and afterwards a continuous solution Ũ that satisfies SŨ = −BV . The
sum U := V + Ũ then satisfies

SU = S(V + Ũ) = SrefV +BV + SŨ = G

as desired.
We begin by solving the equation

SrefV =
(

d
dξ
−Aref

)
V = G.

According to Proposition 3.1, the equation

(4.1)
dV
dξ

= ArefV

has exponential dichotomies. Let Pref and (id−Pref) be the corresponding pro-
jections such that (4.1) generates exponentially decaying C0-semigroups on both
R(Pref) and R(id−Pref). For any G0 ∈ Y 1, define

V(ξ) :=
{

eArefPrefξPrefG0 for ξ > 0
−eAref(id−Pref)ξ(id−Pref)G0 for ξ < 0.

By standard semigroup theory, the function V is differentiable for ξ ≠ 0 and
satisfies (4.1) for ξ ≠ 0. Furthermore, the limits V 0+ := limξ↘0 V(ξ) and V 0− :=
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limξ↗0 V(ξ) exist. For any test function χ ∈ C∞0 (R, Y 1), we obtain

−
∫∞
−∞

〈
V,

dχ
dξ

+A∗
refχ

〉
Y

dξ

= −
∫∞

0

〈
eArefPrefξPrefG0,

dχ
dξ

+A∗
refχ

〉
Y

dξ

+
∫ 0

−∞

〈
eAref(id−Pref)ξPrefG0,

dχ
dξ

+A∗
refχ

〉
Y

dξ

=
〈
eArefPrefξPrefG0, χ

〉
Y

∣∣∣
ξ=0

+
〈
eAref(id−Pref )ξPrefG0, χ

〉
Y

∣∣∣
ξ=0

= V 0
+ − V 0

− = 〈G0, χ(0)〉Y =
∫∞
−∞
〈G0δ(ξ), χ〉Y dξ

using integration by parts and the fact that V satisfies (4.1) for ξ ≠ 0. This shows
that, for G0 ∈ Y 1, V satisfies SrefV = G. For G0 ∈ Y , we define a solution
V ∈ L2(R, Y ) of SrefV = G by approximating G0 by a sequence in Y 1 and using
the strong continuity of the semigroup (see [18, Section 5.3.1] for details).

In the next step, we solve

(4.2) SŨ = −BV
that involves the solution V of the reference equation. The right-hand side −BV
of (4.2) is in L2(R, Y ) since its first component vanishes completely, while the
second component is continuous except at ξ = 0 and decays exponentially as
ξ → ±∞. Since S restricted to D(T ) coincides with T , and since both operators
are invertible by assumption and by Lemma 4.1, we can solve (4.2) and obtain a
unique solution Ũ = (φ̃, ã) ∈ D(T ). Using the fact that the first component of
−BV vanishes, we see that φ̃(ξ, η) = ã(ξ+η) with ã ∈ H1(R,Cn). In particular,
Ũ is continuous on R with values in Y and

‖Ũ‖H1(R,Y ) + ‖Ũ‖L2(R,Y 1) ≤ C‖V‖L2(R,Y ).

Lastly, as mentioned earlier, the sum U = Ũ+V satisfies all the properties stated in
the lemma. In particular, it is continuous on R− and R+, and the jump at ξ = 0
is exactly the jump of V at ξ = 0. Therefore, U+(0)−U−(0) = G0. ❐

The previous lemma allows us to define a continuous, injective map

Π(ξ0) : Y -→ Y × Y , G0 7 -→ (U+(ξ0),U−(ξ0)).

Using the canonical projections Pi(ξ0) : Y × Y → Y defined by Pi(ξ0)(U1, U2) =
Ui for i = 1,2, we have the relation

G0 = P1(ξ0)Π(ξ0)G0 − P2(ξ0)Π(ξ0)G0
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for any G0 ∈ Y .

Lemma 4.3 ([18, Lemma 5.3]). Suppose that T is invertible. The images
R(Pi(ξ0)Π(ξ0)) are then closed subspaces, and we have R(P1(ξ0)Π(ξ0)) ⊕
R(P2(ξ0)Π(ξ0)) = Y for each ξ0 ∈ R.

We can then define a family of projections P(ξ) such that R(P(ξ)) =
R(P1(ξ)Π(ξ)) and N(P(ξ)) = R(P2(ξ)Π(ξ)). Note that, for anyU+ ∈ R(P(ξ0)),
there exists a unique strong solution V s(ξ) of (2.2), defined for ξ > ξ0, with initial
value V s(ξ0) = U+. Analogously, for any U− ∈ N(P(ξ0)), there exists a unique
strong solution Vu(ξ) of (2.2), defined for ξ < ξ0, with initial value Vu(ξ0) = U−.
This projections define the desired exponential dichotomies.

Lemma 4.4 ([18, Lemma 5.5]). The family P(ξ) of projections together with
the solutions V s and Vu defines an exponential dichotomy on R.

4.3. T is Fredholm. Again, we closely follow the proof given in [18] for
parabolic equations in cylinders. Since most of the details are identical, save for
notation, we comment only on those two parts of the proof where the arguments
in [18, Section 5.3.2] need to be modified. First, the proof given in [18, Sec-
tion 5.3.2] uses the fact that the null spaces of T and S coincide. We proved in
Lemma 4.1 that this is always the case. Second, the following weak uniqueness
condition (U1) has been used in [18].
(U1) If V is in the null space of T or the adjoint operator T ∗ and V(ξ0) = 0 for
some ξ0, then V vanishes identically.

This assumption is, however, equivalent to Hypothesis 1.1 on account of
Lemma 2.2. Now that the above two properties are established, the abstract
proof in [18] applies to our situation and gives the existence of exponential di-
chotomies. This completes the proof of Theorem 1.1 on the existence of expo-
nential dichotomies.

4.4. Proof of Theorem 1.2. It suffices to show that the hypotheses of Theo-
rem 1.2 imply the hypotheses of Theorem 1.1 which we proved in the last section.
Proposition 2.1 which is due to Mallet-Paret [11] implies that L is Fredholm pro-
vided it is asymptotically hyperbolic. We established in Lemma 2.4 that T is Fred-
holm whenever L is. It therefore remains to demonstrate that Hypothesis 1.1 is a
consequence of the following Hypothesis 4.1 which we assumed in Theorem 1.2.

Hypothesis 4.1. Assume that neither detAm(ξ) nor detA−m(ξ) vanish on
any open interval.

To establish that Hypothesis 1.1 follows from Hypothesis 4.1, suppose that
a ∈ N(L) such that a(ξ) vanishes identically on the interval [ξ0−m, ξ0+m].
We want to prove that this implies that a(ξ) = 0 for all ξ ∈ R and argue by
contradiction. Note that, by Lemma 2.2, a is a classical solution of (2.1). Thus,
without loss of generality, we assume that

ξ1 := inf{ξ ≥ ξ0 : a(ξ +m) ≠ 0}
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exists and is finite. Since a(ξ + j) = 0 for |j| ≤m and ξ0 ≤ ξ ≤ ξ1, we have

a′(ξ) =
m∑

j=−m
Aj(ξ)a(ξ + j) = Am(ξ)a(ξ +m)

for all ξ ∈ [ξ1, ξ1+1). By the definition of ξ1, there exists an open and non-
empty interval J ⊂ (ξ1, ξ1 + 1) such that a(ξ +m) ≠ 0 for any ξ ∈ J. Thus, we
conclude that

a′(ξ) = Am(ξ)a(ξ +m) ≠ 0

for some ξ ∈ J, since detAm(ξ) does not vanish identically on J by Hypothe-
sis 4.1. This contradicts the definition of ξ1.
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