
Shifting consensus in a biased compromise model

Olivia Cannon2, Ty Bondurant3, Malindi Whyte4, and Arnd Scheel2,1

2 University of Minnesota, School of Mathematics, 206 Church St. S.E., Minneapolis, MN 55455, USA

3 Mathematics Department, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332 USA

4 Department of Mathematics, Wake Forest University, 127 Manchester Hall, Winston-Salem, NC 27109, USA

Abstract

We investigate the effect of bias on the formation and dynamics of political parties in the bounded confi-

dence model. For weak bias, we quantify the change in average opinion and potential dispersion and decrease

in party size. For nonlinear bias modeling self-incitement, we establish coherent drifting motion of parties

on a background of uniform opinion distribution for biases below a critical threshold where parties dissolve.

Technically, we use geometric singular perturbation theory to derive drift speeds, we rely on a nonlocal center

manifold analysis to construct drifting parties near threshold, and we implement numerical continuation in a

forward-backward delay equation to connect asymptotic regimes.

1 Introduction

The bounded confidence model [19] has been pivotal in the study of social dynamics, providing a mechanism for the

formation of opinion clusters, also called parties. Agents are attributed numerical values of opinions. They interact

and change their opinions through compromise, but only with other agents whose opinions are sufficiently close,

i.e. within a bounded confidence interval. The model can be framed in many different formulations – stochastic

Markov processes, deterministic mean-field equations, discrete or continuous opinion values – but the qualitative

phenomena are similar: a uniform distribution of opinions is an unstable steady-state, and fluctuations lead to the

formation of clusters, often regularly spaced [4, 5, 6, 17, 19, 26, 27].

This model has been used in large part to study mechanisms of polarization, and to that end, many modifications

have been made, including for instance variations of the confidence interval between agents, introduction of a small

number of agents who do not compromise (’stubborn’ agents), and variations in the probability of interaction

[9, 10, 11, 13, 18, 24, 29, 30, 32]. The present work is concerned with drift of opinion clusters; that is, with the

continuous movement of clusters toward one extreme of the opinion spectrum. While drift caused by asymmetric

confidence has been reported in [19, §4.2], there appear to be few systematic computational or analytical studies

of this phenomenon. We are interested in this effect as a self-organized phenomenon, caused by behavioral bias in

individual agents. We model this through the addition of bias terms to the bounded confidence model. We will

demonstrate how bias terms typically lead to drift of average opinions in a party, but may also lead to disintegration

of individual parties (see § 6). Our focus therefore will be on a nonlinear quadratic bias term that corresponds

to self-incitement and which leads to both persistent and coherent drift, avoiding in particular a dispersal and

disintegration of the party. The focus on this quadratic bias is also rooted in its relevance as a model for the

common sociological phenomenon of group polarization, in which the size of a group is related to the strength of

the push to adopt more extreme opinions [23].

To be specific, we study the following deterministic mean-field model for the evolution of populations of agents Pn

with opinion n ∈ Z,

dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(P 2

n+1 − P 2
n), n ∈ Z. (1.1)

Here, β = 0 corresponds to the deterministic Hegselmann-Krause bounded-confidence model on a lattice, where

populations Pn−1 and Pn+1 interact with mass-action rates to form opinions Pn. We added the self-incitement bias

term β(P 2
n+1−P 2

n) which can be interpreted as that an individual agent decreases their opinion value by one with

probability proportional to the population size with the same opinion: interactions between “same-opinion agents”

leads to opinion drift toward the extreme. The strength of the bias term is encoded in the parameter β > 0.

1The authors acknowledge partial support through grants NSF DMS-1907391 and NSF DMS-2205663.

1



Our results for this model can roughly be summarized as follows:

(i) For supercritical, strong bias, β > 2, formation of political parties is suppressed and uniform distribution of

opinions is stable;

(ii) For weak bias, drift speeds c are at leading order proportional to bias and party mass, c ∼ 2βm
π ;

(iii) For subcritical bias β ≲ 2, we establish rigorously coherent party drift on a constant background of size m

with speed c ∼ 4m;

(iv) For bias 0 < β < 2, we find drifting parties by numerical continuation and find that the background population

that supports coherent party drift is exponentially small, exp(−const/β).

The results in (i)-(iii) are analytical. Only in the regime (iii) are we able to establish existence of coherent party

drift, while (ii) leaves open the possibility of eventual dispersal of a party. We also briefly discuss some intriguing

phenomena related to stability and instability of drifting parties.

Technically, the results in (ii) rely on a leading order computation of a flow on a slow manifold using geometric

singular perturbation theory, while (iii) uses a recently introduced novel method for analyzing coherent structures

in nonlocally coupled equations.

Outline. In §2, we collect information about the bounded confidence model and the model with bias terms added,

as well as the linearization at single-party and uniform states. We establish in §3 the speed of drift for β ≪ 1,

case (ii), using methods from geometric singular perturbation theory. The β ↗ 2 regime, case (iii), is treated in

§4, where drifting solutions are established using nonlocal methods. In §5, we describe numerical approaches and

results, in particular concerning case (iv), above. Section §6 describes numerical evidence for lack of coherence

when the equation is posed with other bias terms. We conclude with a brief discussion.

2 The bounded confidence model: equilibria, stability, and bias

The bounded confidence model

dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2), Pn ⩾ 0, n ∈ Z, (2.1)

describes the dynamics of an opinion distribution Pn(t), n ∈ Z, where Pn(t) represents the local population size

with opinion n at time t. Agents at sites n − 1 and n + 1 compromise through interaction, moving to opinion n,

while agents at site n compromise with those at n + 2 and n − 2, leaving site n. There is no interaction between

agents at a distance greater than 2. The equation clearly perserves mass and average opinion (or first moment),

d

dt

∑
n

Pn = 0,
d

dt

∑
n

nPn = 0.

provided reasonable conditions such as sufficient localization at |n| → ∞. The dynamics of (2.1) are to some extent

understood. The consensus process leads to the formation of opinion clusters, which one refers to as parties. For

(2.1), these parties can be supported on 1 or 2 opinions sites, that is, for instance, P0 = 1, Pj = 0 for j ̸= 0, or

P0 = α, P1 = 1 − α, Pj = 0 for j ̸∈ {0, 1}. Parties separated by at least 2 empty sites between them will not

interact and one can in this fashion generate equilibrium states with multiple parties. Political parties, once well

established after initial transients, appear to be very robust, although introduction of agents away from existing

parties may lead to the formation of new parties. In addition to these single-party states, supported on one or two

opinion sites, and the associated well separated multi-party states, the equation also supports equilibria of uniform

opinion distribution, Pn ≡ m for all m. We refer to [4] for background on the model and its dynamics. We note

however that many questions of stability have not been answered in a precise mathematical fashion, possibly due

to the abundance and complexity of possible equilibrium configurations.
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Figure 2.1: Single-party at one or two sites, multi-party, and uniform distribution equilibria (left). Phase-space schematic of a family

of single-party equilibria with corners at one-site parties (right).

2.1 Single party states

A single two-site party of mass m takes the form P ∗
α,n = (0, ...,

↓n
mα,m(1 − α), ..., 0)⊥, for α ∈ (0, 1). In the limit

α = 0 or α = 1, the party only occupies one site. It represents (total) consensus of opinion at two adjacent opinion

sites n and n+1. The linearized vector field at a two-site and at a one-site equilibrium (α = 0) of (2.1) with mass

m = 1 are, respectively, given by the matrices

0
. . .

−α 0 0 0 0 0

2α −(1− α) 0 0 0 0

−α 2(1− α) 0 0 −α 0
n←−

0 −(1− α) 0 0 2α −(1− α)
0 0 0 0 −α 2(1− α)
0 0 0 0 0 −(1− α)

. . .

↑
n

0



, and



0
. . .

−1 0 0 0 0

2 0 0 0 0

−1 0 0 0 −1 n←−
0 0 0 0 2

0 0 0 0 −1
. . .

↑
n

0


.

By scaling invariance, linearization at parties with mass m gives the same matrices multiplied by a factor m.

Both matrices clearly have infinite-dimensional kernels, with bases spanned by{
ej

∣∣ j ̸= n− 2, n− 1, n+ 2, n+ 3
}
, and

{
ej

∣∣ j ̸= n− 2, n+ 2
}
,

respectively. Here, en is the canonical basis vector such that (en)k = δnk with Kronecker-δ notation.

For the two-site party, the kernel has codimension 4, and corresponds to the two sites of the party and the sites

at a distance 3 or more away. The spectrum of the linearization is {0,−mα,m(1 − α)}. For the one-site party,

the kernel has codimension 2 and the spectrum of the linearization is {0,−m}. The complement of the kernel can

be associated with opinion sites n that interact with the support of the party, while kernel elements correspond

to lattice sites that do not interact with the party, either because they are too far away or because they simply

change the shape of the party.

Associated with the kernel elements en and en+1 for the two-site party, there is a two-dimensional family of single

party equilibria parameterized by the mass m and the parameter α, which can be thought of as parameterizing the

average opinion in the party. At the two-site party, one can associate the kernel vector en with mass change, and

the kernel vectors en+1 and en−1 with increases or decrease in the average opinion in the party. Note however that

the direction en+1+en−1 associated with states (. . . , 0, 0, α, 1, α, 0, 0, . . .)⊥ does not correspond to the tangent space

of a family of equilibria. Similarly, directions in the kernel with support on more than two sites do not correspond

to families of equilibria. In particular, the infinite-dimensional kernel is not simply the tangent space to a high-

dimensional family of equilibria, a fact that will slightly complicate the application of singular perturbation theory,

later. We remark that the stability of single-party states is analytically rather subtle due to this high-dimensional

kernel and the possible associated dynamics of clustering of small mass nearby in phase space, but far away in the

opinion spectrum.
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Fixing total mass, single-party states naturally come in a one-parameter family F that can be parameterized by

their average opinion: A party with mass 1− α at site n and mass α at site n+ 1 has average opinion n+ α.

Drifting opinion in a biased model is to leading order described by drift along this continuous family of single-party

states. A subtlety arises when viewing this family in phase space. The tangent vector to the family of two-site

parties supported on sites n and n + 1 is en − en+1. This tangent vector is discontinuous at the one-site party,

where the continuous curve of single-party equilibria possesses a corner; see Figure 2.1 for an illustration. Drift

along this corner, as we shall see below, introduces dynamics and error terms known from the analysis of a passage

through a transcritical bifurcation.

2.2 Uniform distribution of opinions

The uniform state Pn ≡ m is also an equilibrium of (2.1). This equilibrium turns out to be unstable and a

typical question of interest is how fluctuations around this equilibrium evolve into multi-party states. In order to

understand this process, one usually starts by linearizing (2.1) at the uniform state to find

dPn

dt
= m(−Pn−2 + 2Pn−1 − 2Pn + 2Pn+1 − Pn+2).

Solutions to this constant-coefficient lattice-differential equation can readily be found after Fourier transform.

Therefore inserting an ansatz Pn = eiσn+λt, one finds the dispersion relation

λ = 2m(2 cos(σ)− cos(2σ)− 1), −π ⩽ σ < π;

see also Figure 2.2. The temporal eigenvalue λ is real and obtains a maximum of 1 at σ = ±π
3 .

The linearization therefore predicts fastest growth of perturbations with period n = 6, predicting that white-noise

fluctuations around a constant state would evolve towards a multi-party state with party peaks at sites with distance

δn = 6. A more refined branch point analysis of this dispersion relation reveals that localized perturbations of the

unstable state evolve into parties with different spacing, δn = 5.311086 . . .; see [5]. We will return to this analysis

when considering stability of uniform states with (strong) bias.

2.3 The effect of bias on equilibria

Returning to the model equation with self-incitement bias,

dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(P 2

n+1 − P 2
n), (2.2)

we note that, for β > 0, single-party states do not form equilibria. The resulting drift of single parties along the

family of equilibria F with a resulting change in average opinion is the object of much of the remainder of this

paper.

On the other hand, the uniform state does persist as an equilibrium, but the linearization picks up new terms.

When β > 0, the linearized equation

dPn

dt
= m(−Pn−2 + 2Pn−1 − (2 + 2β)Pn + (2 + 2β)Pn+1 − Pn+2)

has dispersion relation

λ = m(−2 cos(2σ) + (4 + 2β) cos(σ)− (2 + 2β) + iβ sin(σ)). (2.3)

For β < 2, the maximum of Reλ(σ) is positive and the uniform state is unstable. However, for β ≥ 2, Reλ ⩽ 0 is

nonpositive, with a quadratic tangency of the eigenvalues at the origin for β > 2: strong bias stabilizes uniform

distribution of opinion and hence disfavors consensus!

The spectral stability in the dispersion relation translates readily into linear stability in, say, ℓ2. One would also

expect nonlinear stability with approximately diffusive decay of the perturbation for localized initial conditions,

measured in ℓ∞, due to the presence of (discrete) derivatives in the nonlinearity; see Remark 4.1 for more detail.

We shall exploit the change of stability in our bifurcation analysis, showing that the destabilization is accompanied

by the creation of localized coherent structures, in §4.
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Figure 2.2: Linear dispersion relation (2.3) for β < 2, β = 2, and β > 2.

3 Small bias regime

We study here dynamics for 0 < β ≪ 1. We use methods from geometric singular perturbation theory (GSPT) to

investigate the speed of propagation of a single party in the biased system. We note that the lack of smoothness

of the family of equilibria in the unbiased system prohibits a global slow-fast decomposition using existing theory.

Nevertheless, we find locally invariant manifolds and separately analyze the system near the points where the

manifold is not smooth, allowing us to compute the local speed of propagation for small bias.

3.1 Singular perturbation analysis near single-party equilibria

We begin by establishing the existence of locally invariant manifolds.

Proposition 3.1 (Two-site center manifold) Fix n ∈ Z, k ⩾ 1 ∈ N arbitrary, and δ > 0, arbitrarily small.

Then, for each fixed mass m > 0 of two-site party equilibria, there exists a family of locally invariant, infinite-

dimensional, codimension-4, Ck-manifolds Mβ ⊂ ℓ∞, which depend on β in a Ck-fashion such that M0 ⊃
{P ∗

α,n | α ∈ (δ, 1 − δ)}, the part of the family of two-site single party equilibria supported on sites n and n + 1

away from one-site party equilibria. Its tangent space for β = 0 at any of the two-site equilibria coincides with the

infinite-dimensional kernel of the linearization at this equilibrium.

Proof. The manifold of equilibriaM0 is (locally) invariant and its linearization possesses an exponential dichotomy

with a 4-dimensional stable subspace and an infinite-dimensional center subspace, with uniformly bounded pro-

jections Ps and Pc. Standard theory for invariant manifold then shows the existence of smooth, locally invariant

center-manifolds associated with this splitting, using for instance graph transforms as in [3, 16, 21].

Proposition 3.2 (One-site center manifold) Fix n ∈ Z, k ⩾ 1 ∈ N arbitrary, and δ > 0, sufficiently small.

Then, for fixed mass m > 0 of the one-site equilibrium, there exists a family of locally invariant, infinite-

dimensional, codimension-2, Ck-manifolds M′
β ⊂ ℓ∞, which depend on β in a Ck-fashion such that M′

0 ⊃
P ∗
n ∪ {P ∗

α,m |m = n, α ∈ (0, δ);m = n − 1, α ∈ (1 − δ, 1)}, the family of two-site single party equilibria close

to the one-site equilibrium P ∗
n . Its tangent space for β = 0 at the one-site equilibrium coincides with the infinite-

dimensional kernel of the linearization at this equilibrium.

Proof. This is a standard local center-manifold result in infinite dimensions; see for instance [34, 20]. It contains

the family of equilibria since it contains all small solutions bounded for all times.

We emphasize that the two-site center-manifold is global in the sense that it contains a compact subset of the

line of equilibria between two one-site parties, while the one-site center manifold is local, defined only in a small

neighborhood of the one-site party.

3.2 Leading-order dynamics away from corners

Using invariance, we can now compute the leading-order dynamics on each manifold and the reduced flow. Away

from the corners, we can parameterize the kernel of the linearization at a two-site party P ∗
n,γ through values qn,
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qn+1, and p ∈ ℓ∞, pj = 0 for n− 2 ≤ j ≤ n+ 3, and write the manifold by P = h(qn, qn+1, p, β), with

h(Pn, Pn+1, p, β) = (γ + qn)en + (1− γ + qn+1)en+1 + p+O(β, |qn|2 + |qn+1|2, |p|2).

In this parameterization, we have

q̇n = βPc(G(h(qn, qn+1, p, β)))n +O(β2, |qn|2 + |qn+1|2, |p|2),
q̇n+1 = βPc(G(h(qn, qn+1, p, β)))n+1 +O(β2, |qn|2 + |qn+1|2, |p|2),

ṗ = O(|p|2, |βp|, β2(|qn|+ |qn+1|)),

where G(P )j = P 2
j+1 − P 2

j , and Pc is the spectral projection onto kerDf(P ∗
α,n), defined as

Pc(P )j =


Pj , j < n− 2, j > n+ 3

0, j = n+ 1, n+ 2, n− 1, n− 2

3Pn−2 + 2Pn−1 + Pn − Pn+2 − 2Pn+3, j = n

−2Pn−2 − Pn−1 + Pn+1 + 2Pn+2 + 3Pn+3, j = n+ 1

,

Now scaling p = βq, we find explicitly at leading order on the center manifold,

q̇n = β(γ2 + (1− γ)2) +O(β2),

q̇n+1 = −β((γ)2 + (1− γ)2) +O(β2),

ṗ = O(β2).

Clearly, at leading order mass in the party is conserved, Ṗn + Ṗn+1 = 0. For the family of two-site parties

parameterized by Pn = α, Pn+1 = 1− α, this gives

α̇ = −β[α2 + (1− α)2] +O(β2). (3.1)

We compare this first order approximation (3.1) with numerically computed drift speeds averaged in time, that is,

covering the interval α ∈ [0, 1] rather than the interval (δ, (1− δ) where the above analysis applies, in Figure 3.1.

Details on computational procedures are delineated in §5. We see that the predicted speeds here give the leading

order term for small β, but the discrepancy for even moderately small values of β are significant. We show how

this discrepancy can be attributed to the passage near the one-site parties, contributing a term β3/2.

0 0.002 0.004 0.006 0.008 0.01
0

0.002

0.004

0.006

0.008

0.01

Figure 3.1: Comparisons of leading order average drift speed prediction from theory (red) with numerically computed drift speed (blue)

for a party of total mass 1.

3.3 Corner dynamics and slow passage through transcritical bifurcations

We now compute the leading-order dynamics near the one-site party. The kernel of the linearization Df(P ∗
n) is

now of codimension 2, and we parameterize elements Pc of the kernel by values α+, α−, αm ∈ R and p ∈ ℓ∞, with
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pj = 0 for n− 2 ≤ j ≤ n+ 2. Let

e+ = (0, ..., 1,
↓n
−1, 0, ...)⊥, e− = (0, ..., 0,

↓n
−1, 1, ...)⊥, em = (0, ..., 0,

↓n
1 , 0, ...)⊥,

e∗+ = (0, ..., 0, 0,
↓n
0 , 1, 2...)⊥, e∗− = (0, ..., 2, 1,

↓n
0 , 0, 0, ...)⊥, e∗m = (0, ..., 1, 1,

↓n
1 , 1, 1, 0...)⊥.

We write the center manifold as manifold as the graph of hc = hc(α+, α−, αm, p, β), with

hc(α+, α−, αm, p, β) = P ∗
n + p+ α+e+ + α−e− + αmen +O(|α+|2 + |α−|2 + |αm|2 + |p|2 + β2).

In these coordinates, we have

Ṗc = Pc(f(P ∗
nPc + hc(Pc))) +O(|Pc|3 + β3),

where the spectral projection Pc onto kerDf(P ∗
α,n) is given by

Pcv = ⟨v, e∗+⟩e+ + ⟨v, e∗−⟩e− + ⟨v, e∗m⟩en +
∑
|i|>3

⟨v, ei⟩ei.

Writing the vector field in terms of α+, α−, αm, p, β, we find

f(P ∗
n + Pc + h(Pc)) =



...

2p−3p−5 − p−4p−6

−p−3α− − p−3p−5

−h− + 2p−3α−
2h−α−α+ − α−p−3 + β(1 + 2(αm − α− − α+))

2α+α− − (h− + h+)− β(1 + 2(αm − α− − α+))

2h+ − α+α− − α+p3
−h+ + 2α+p3
−α+p3 − p3p5
2p3p5 − p4p6

...



n←− +O(|Pc + β|3),

which in turn gives

α̇− = ⟨f(P ∗
n + Pc + hc(Pc)), e

∗
−⟩ = β − α−α+ + 3p−3α− + 2β(αm − α+ − α−) +O(3)

α̇+ = ⟨f(P ∗
n + Pc + hc(Pc)), e

∗
+⟩ = −α−α+ + 3p3α+ +O(3)

α̇m = ⟨f(P ∗
n + Pc + hc(Pc)), e

∗
m⟩ = p3α+ + p−3α− +O(3)

ṗ3 = ⟨f(P ∗
n + Pc + hc(Pc)), e3⟩ = −p3α+ − p3p5 +O(3)

ṗ−3 = ⟨f(P ∗
n + Pc + hc(Pc)), e−3⟩ = −p−3α− − p−3p−5 +O(3)

ṗ4 = ⟨f(P ∗
n + Pc + hc(Pc)), e4⟩ = −2p3p5 − p4p6 +O(3)

ṗ−4 = ⟨f(P ∗
n + Pc + hc(Pc)), e−4⟩ = −2p−3p−5 − p−4p−6 +O(3)

ṗj = 2pj−1pj+1 − pj(pj+2pj−2 +O(3), |j| > 4.

At leading order, the subspace where pj = 0 for all j and αm = 0 is invariant, and we therefore consider the

leading-order equation for α−, α+, only,

α̇− = β − α−α+ − 2β(α+ + α−), α̇+ = −α−α+.

Changing variables x = α− + α+ and µ = α− − α+, this gives

ẋ = −1

2
(x2 − µ2) + 2β(1− x), µ̇ = 2β(1− x).

In the natural scaling x ∼ µ ∼ β1/2, the terms −2βx are of higher order. The remaining terms describe precisely

the slow passage through a transcritical bifurcation as studied for instance in [25] using geometric desingularization.
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The passage near the one-site party can be analyzed by starting in a section to the flow {x − µ = 2δ} near

x = −µ = δ and tracking time until the section x + µ = 2δ near x = µ = δ. At leading order this time is given

by 2δ/β, which confirms that, at leading order, the passage time near the one-site equilibrium can be ignored

in the computation of the average speed, letting for instance δ → 0. The scaling does however introduce error

terms involving β1/2, which indeed manifest themselves in corrections to the averaged speed of order β3/2; see for

instance [25]. We did not attempt to derive these corrections analytically but numerically found the coefficient to

the β3/2 correction as -.467; see Figure 3.2 for numerical values of the drift speed of a party of mass 1, plotted

against the theoretical prediction with and without the β3/2-correction.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

Figure 3.2: Numerically computed values for the drift speed (blue) plotted against the leading-order approximation (green) and the

approximation with the β
3
2 correction.

4 Large bias regime

In this section, we investigate the dynamics as β gets large. Numerically, we see that the background mass of

profiles increases, and that as β approaches 2, the size of the profiles becomes arbitrarily small relative to the

background mass.

We can see that this agrees with heuristics from the spectrum of the linearization at the background mass. We

recall the dispersion relation for the linearization at the uniform steady-state u ≡ m:

−iω = m(−2 cos(2σ) + (4 + 2β) cos(σ)− (2 + 2β) + 2iβ sin(σ)),

and note that the quantity −iω has nonpositive real part exactly when β ≥ 2. Therefore the uniform steady-state

regains (marginal) linear stability when β = 2, which may explain why traveling profiles disappear. For β < 2 but

sufficiently close, numerically we see small-amplitude, long-wavelength profiles atop the background state u ≡ m.

In this section, we rigorously establish the existence of these spike solutions for β sufficiently close to 2. We first

derive formal amplitude equations, giving heuristics for the existence of spike solutions. We then establish existence

rigorously and derive expansions through a nonlocal center manifold computation, followed by a Melnikov analysis

of the reduced system.

Formal derivation of amplitude equations. We derive formal amplitude equations for the β ∼ 2 regime,

under long-wavelength, small-amplitude assumptions. We will see in §4.2 that rigorous center manifold calculations

in fact agree with the resulting amplitude equations. For our approximation, we follow [31] by choosing the regime

in which the lattice spacing remains constant, but the spatial variable in the KdV equation is rescaled.

Assume that (2.2) permits a small, long-wavelength solution Pn = m+ ε2u(ε(n+ ct), ε3t) where c = 2mβ is chosen

as the group velocity at the constant state. To simplify notation, let ξ ≡ n+ ct. Substituting the ansatz into (2.2)

and grouping linear and nonlinear terms, we find

∂t
[
u(εξ, ε3t)

]
=2m

[
u(εξ − ε, ε3t) + u(εξ + ε, ε3t)

]
−m

[
2u(εξ, ε3t) + u(εξ − 2ε, ε3t) + u(εξ + 2ε, ε3t)

]
+ 2mβ

[
u(εξ + ε, ε3t)− u(εξ, ε3t)

]
− ε2u(εξ, ε3t)

[
u(εξ − 2ε, ε3t) + u(εξ + 2ε, ε3t)

]
+ 2ε2u(εξ − ε, ε3t)u(εξ + ε, ε3t) + βε2

[
u2(εξ + ε, ε3t)− u2(εξ, ε3t)

]
. (4.1)
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We now expand u in the first variable,

u(εξ+kε, ε3t) = u(εξ, ε3t)+kε ·∂1u(εξ, ε3t)+
(kε)2

2!
·∂21u(εξ, ε3t)+

(kε)3

3!
·∂31u(εξ, ε3t)+

(kε)4

4!
·∂41u(εξ, ε3t)+O(ε5),

for each k ∈ {−2,−1, 0, 1, 2}, and we implicitly assume sufficient smoothness in u. Inserting the expansion into

(4.1), we find

ε3∂2u =2m
[
ε2∂21u+

ε4

12
∂41u

]
−m

[
4ε2∂21u+

4

3
ε4∂41u

]
+ 2mβ

[
ε2

2
∂21u+

ε3

6
∂31u+

ε4

24
∂41u

]
− ε2

[
2u2 + 4ε2u∂21u+

4ε4

3
u∂41u

]
+ 2ε2

[
u2 + ε2u∂21u− ε2(∂1u)2 +

ε4

12
u∂41u−

ε4

3
∂1u∂

3
1u+

ε4

4
(∂21u)

2
]

+ βε2
[
2εu∂1u+ ε2u∂21u+ ε2(∂1u)

2 + ε3∂1u∂
2
1u+

ε3

3
u∂31u+

ε4

4
(∂21u)

2 +
ε4

12
u∂41u+

ε4

3
∂1u∂

3
1u

]
+O(ε5).

where ∂1 and ∂2 refer to the partial derivatives with respect to the first and second arguments εξ and ε3t, respec-

tively. Retaining orders O(ε2) to O(ε4), then dividing by ε3, we find the formal amplitude equation

∂2u =
m(β − 2)

ε
∂21u+

mβ

3
∂31u+ 2βu∂1u− ε

(
(14− β)m

12
∂41u+ (2− β)∂1 (u∂1u)

)
+O(ε2). (4.2)

Note that for β = 2 +O(ε2), at leading order, (4.2) becomes the KdV equation

∂2u =
2m

3
∂31u+ 4u∂1u. (4.3)

The KdV equation possesses a family of traveling spikes parameterized by the wave speed (or the amplitude). At

the next order O(ε), with β = 2 − ε2β̃, β̃ > 0, we find a damping term −εm∂41u, fourth order viscosity, and a

negative damping term −εmβ̃∂21u, negative viscosity. The analysis presented below demonstrates that this equation

can be rigorously derived as an ODE at leading order on a center manifold, and that the effects of negative and

positive viscosity balance for an appropriate wave speed (or amplitude) in the reduced center manifold equation.

Remark 4.1 (Viscous Burgers modulation and stability) For β > 2 one finds that (4.2) reduces at leading

order to viscous Burgers equation, ∂2u = ∂21u+ u∂1u, after appropriate scalings. It is known that in this approxi-

mation, localized initial conditions decay algebraically in  L∞ and that higher-order terms, that is, terms carrying

higher powers in u or more derivatives are irrelevant in the long-time asymptotics of small data; see [8]. We there-

fore suspect that one can establish asymptotic stability in ℓ∞ of constant distributions of opinions in our system

for values of β > 2 and small perturbations in ℓ1. On the other hand, ℓ∞ perturbations may evolve into persistent

dynamics, for instance viscous shocks, rarefaction waves, and their superposition; see [12] for such a construction

based on a Burgers approximation.

4.1 Statement of main result

In order to precisely state the main result of this section, we collect some definitions and notation. We define

a traveling wave in a 1-D lattice as a solution of the form Pn = Q(n + ct), where Q(·) defines a fixed profile

which moves through the lattice. Seeking such a solution, we reformulate the problem as a functional differential

equation: substituting Pn = Q(n+ ct), we get

0 = −cQ′(ξ) + 2Q(ξ − 1)Q(ξ + 1)−Q(ξ)
(
Q(ξ − 2) +Q(ξ + 2)

)
+ β

(
Q2(ξ + 1)−Q2(ξ)

)
, (4.4)

where ξ = n+ ct ∈ R.
Further writing Q(ξ) = m+ q(ξ), we have

0 = −cq′(ξ) +m(2q(ξ − 1) + 2(β + 1)q(ξ + 1)− 2(β + 1)q(ξ)− q(ξ − 2)− q(ξ + 2) +N (q, β)), (4.5)

where N (q, β) = 2q(ξ − 1)q(ξ + 1)− q(ξ)(q(ξ − 2) + q(ξ + 2)) + β(q(ξ + 1)2 − q(ξ)2).
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Note that we can rewrite the forward-backward delay equation (4.5) as a nonlocal equation

0 = −cq′(ξ)− 2m(β + 1)q(ξ) +mK ∗ q +N (q, β), (4.6)

with convolution kernel K(·) = −δ(· − 2) + 2δ(· − 1) + 2(β + 1)δ(·+ 1)− δ(·+ 2).

We are now ready to state the main result of this section:

Theorem 1 There exists β∗ > 0 such that for 2 − β∗ < β < 2, there exists a locally unique homoclinic solution

q = q∗β(ξ) to (4.6) with locally unique wave speed c = c(β), with lim|ξ|→∞ q∗β(ξ) = m, and therefore a unique

traveling-wave spike solution (u∗β)n(t) = q∗β(n+ ct) to (2.2). Furthermore, we have

q∗β(ξ) = m(1 +
7(2− β)

10
) sech2(

√
7(2− β)

20
ξ) +O((2− β) 3

2 )

c(β) = m(4− 16

15
(2− β)) +O((2− β) 3

2 ).

Note that in particular q∗β(ξ) > m represents an opinion spike, a traveling party, and c = c(β) > 2mβ is slightly

larger than the linear group velocity 2mβ.

The outline of the proof is as follows: We first show that (4.6) can be reformulated to satisfy the hypotheses of the

nonlocal center manifold theorem in [15], allowing for a center manifold reduction. We then calculate the nonlocal

center manifold expansion in function space and derive the reduced vector field. Finally, we prove existence of

homoclinic solutions to the reduced equations using Melnikov analysis, where the existence of a conserved quantity

becomes crucial.

We begin with the existence of a center manifold. Let β̃ = 2− β, c̃ = c− 4m, and define

Tβ̃,c̃q = −cq
′ − 2m(3− β̃)q +mK ∗ q,

as an operator on H1
−η(R,R) where

∥u∥H1
−η

= ∥u(·)e−η|·|∥H1 ,

is an exponentially weighted space allowing for exponential growth. For η > 0 sufficiently small, consider the kernel

E0, which turns out to be finite-dimensional, and choose a closed complement, thus defining a projection P0 onto

the kernel P0,

E0 = ker T0,0, P0E0 = E0.

Proposition 4.2 Fix η > 0 sufficiently small and consider the functional equation (4.6) in H1
−η(R,R) and k <∞.

There exists neighborhoods Uq×U(0,0) of (0, 0, 0) in E0×R2 and a map Ψ ∈ Ck(Uq×U(0,0), kerP0), with Ψ(0, 0, 0) = 0

and DqΨ(0, 0, 0) = 0 such that for all (β̃, c̃) ∈ U(0,0) the manifold

Mβ̃,c̃
0 =

{
q0 +Ψ(q0, β̃, c̃) : q0 ∈ Uq,

}
⊂ H1

−η

contains the set of all bounded solutions of (4.6), small in C0(R,R).

Proof. Preconditioning (4.6) with the operator
(
2m(β + 1) + c d

dξ

)−1

= Gβ,c∗, withGβ,c =
1
c exp

(
− 2m(β+1)

c ξ
)
χR+(ξ),

the resulting equation

0 =− q + (Gβ,c ∗mK) ∗ q +Gβ,c ∗ N (q, β)

=:− q + K̃β,c ∗ q + Ñ (q, β)
(4.7)

is in the form of [15], with one discrepancy—the kernel K̃β,c = Gβ,c ∗mK is not in W 1,1
η0

for any η0 > 0. However,

since K̃′
β,c is still a sum of an L1

η0
function and scaled translates of Dirac deltas, the results of [15] can be established

with minor modifications as follows. In the proof of [15, Lemma 3.1], the smoothness of K is only used to show that

DT (u) = D(K∗u) = (K′+ρK+ρδ0)∗u satisfies the hypotheses of [14]. Here, we note that although K̃β,c /∈W 1,1
η0

, it

is still true that (K̃′
β,c+ρK̃β,c+ρδ0)∗u satisfies the hypotheses of [14]. Therefore [15, Lemma 3.1] holds identically,

and the rest of the proof in [15] does not use this hypothesis. The parameter-dependent center manifold theorem

[15, Theorem 3] can therefore be applied to the system (4.6), which implies the statement of the proposition.
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4.2 Nonlocal center manifold expansion

Given the existence of a nonlocal center manifold, we now use the methods of [15] to calculate the Taylor expansion

of the center manifold in function space, and derive the reduced vector field.

Since the Taylor expansion is written as a map over the kernel of Tβ̃,c̃, we first find a parametrization of ker Tβ̃,c̃,
and a projection. The dispersion relation given by the linearized equation, in terms of β̃, c̃, is

d(ν, β̃, c̃) = T̂β̃,c̃(ν) = −(4m+ c̃)ν − 2m(3 + β̃) + 2m(eν + e−ν)− 2m(e2ν + e−2ν) + 2m(2− β̃)eν = 0.

Note that d is clearly analytic and roots on the imaginary axis ν ∈ iR are a priori bounded. At β̃ = c̃ = 0, we find

that there are no imaginary roots ν ̸= 0. Expanding d at ν = 0, we have

d(ν, β̃, c̃) = (2mβ̃ − c̃)ν +mβ̃ν2 +
m(2− β̃)

3
ν3 − m(β̃ + 12)

12
ν4 +O(ν5).

Note that d̃(0, 0, 0) = ∂ν d̃(0, 0, 0) = ∂νν d̃(0, 0, 0) = 0, with ∂ννν d̃(0, 0, 0) ̸= 0. Additionally, d̃(iℓ, 0, 0) ̸= 0 for all

ℓ ̸= 0. Thus the kernel E0 of T0,0 in H1
−η is given by

E0 = span{1, ξ, ξ2},

and we write elements q0 ∈ E0 as

q0(ξ) = A0 +A1ξ +A2ξ
2 ∈ E0, (4.8)

with (A0, A1, A2) ∈ R3. Lastly, we define the projection P0 : H3
−ν(R)→ E0 by

P0(q) = q0 + q′(0)ξ +
1

2
q′′(0)ξ2,

noting that this is well-defined by Sobolev embedding and using that the solutions are actually in Hk for k as in

the statement of Proposition 4.2.

The calculation of a reduced center flow is done in two steps: first, invariance is used to derive a Taylor expansion

for the nonlocal center manifold Ψ from Proposition 4.2. Second, the flow Φη on the center manifold, which is

defined by the action of translations ξ 7→ ξ+η on H1
−η, is projected onto the kernel and differentiated with respect

to η at η = 0, yielding a finite-dimensional reduced vector field. We note that the bulk of the computation in this

process is in the first step, since the second step will consist entirely of differentiating polynomials. In fact, the

entire computation involves only polynomials, highlighting the algebraic simplicity of the method.

In writing the center manifold as a graph Ψ over E0, we seek a Taylor expansion of the form

Ψ(A0, A1, A2, β̃, c̃) =
∑
l,r

|l|+|r|>1

Al0
0 A

l1
1 A

l2
2 β̃

r1 c̃r2ψl,r(ξ), (4.9)

where l = (l1, l2, l3), r = (r1, r2). Here, the second multi-index r is present because we are using the parameter-

dependent version of [15, Theorem 1]. We will use invariance to solve for the Taylor coefficients ψl,r. Note that

we do this using the unconditioned equation (4.6), since it makes calculations more straightforward and yields

identical results. We substitute (4.9) into the functional differential equation (4.6), noting that

Tβ̃,c̃(q0 +Ψ) +N (q0 +Ψ) = −c̃q′0(ξ)− 2mβ̃
(
q0(ξ + 1)− q0(ξ)

)
+N (q0, 0) + T0,0(Ψ) +O(3), (4.10)

to obtain at quadratic order that∑
|l|+|r|=2

Al0
0 A

l1
1 A

l2
2 β̃

r1 c̃r2T0,0
(
ψl0,l1,l2,r1,r2(ξ)

)
= c̃q′0(ξ) + 2mβ̃

(
q0(ξ + 1) + q0(ξ)

)
−N (q0, 0)

= 4A0A1 + 4ξA2
1 + 8ξA0A2 + (12ξ2 + 4)A1A2 + (8ξ3 + 8ξ + 4)A2

2

− 2mA1β̃ −A1c̃+ (−2m− 4mξ)A2β̃ − 2ξA2c̃.

(4.11)
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We then take as an ansatz for ψl,r the polynomials ψl,r =
∑

i≥3 αiξ
i, suppressing the dependence on l, r in αi.

The ansatz is inspired by the fact that the kernel E0 consists of polynomials and more generally that the space of

polynomials is invariant under convolution. We calculate

T0,0(α3ξ
3 + α4ξ

4 + α5ξ
5 + α6ξ

6) = (4m)α3 + (16mξ − 24m)α4 + (40mξ2 − 120mξ + 4m)α5

+ (80ξ3 − 360mξ2 + 24mξ − 120m)α6, (4.12)

and compare coefficients between (4.12) and (4.11) for each quadratic power of (A0, A1, A2, β̃, c̃). After doing so,

one finds that the nonzero Taylor coefficients at quadratic order are

ψ1,1,0,0,0 = − 1

m
ξ3, ψ0,2,0,0,0 = − 1

4m
ξ4 − 3

2m
ξ3, ψ1,0,1,0,0 = − 1

2m
ξ4 − 3

m
ξ3,

ψ0,1,1,0,0 = − 3

10m
ξ5 − 9

4m
ξ4 − 71

5m
ξ3, ψ0,0,2,0,0 = − 1

10m
ξ6 − 9

10m
ξ5 − 71

10m
ξ4 − 457

10m
ξ3,

ψ0,1,0,1,0 =
1

2
ξ3, ψ0,1,0,0,1 =

1

4m
ξ3, ψ0,0,1,1,0 =

1

4
ξ4 + 2ξ3, ψ0,0,1,0,1 =

1

8m
ξ4 +

3

4m
ξ3.

(4.13)

We can now compute the reduced vector field on the center manifold. We start by noting that the flow on the

center manifold is defined by the action of translations, that is, at finite order,

Φη((q0 +Ψ)(ξ)) = (q0 +Ψ)(ξ + η)

= q0(ξ + η) +
∑

Al0
0 A

l1
1 A

l2
2 β̃

r1 c̃r2ψl,r(ξ + η),
(4.14)

with q0, ψl,r as in (4.11), (4.12). This flow becomes a reduced flow after projection by P0 onto the kernel, and

lastly becomes a reduced vector field after differentiation at η = 0:

q′0 =
d

dη
P0(Φη(q0 +Ψ))

∣∣∣
η=0

. (4.15)

In order to express (4.15) in terms of (A0, A1, A2), we note that (q0 +Ψ)(ξ + η) is a sum of polynomials in ξ + η,

and calculate

d

dη
P0((ξ + η))

∣∣
η=0

= (1, 0, 0),
d

dη
P0((ξ + η)2)

∣∣
η=0

= (0, 2, 0),
d

dη
P0((ξ + η)3)

∣∣
η=0

= (0, 0, 3),

d

dη
P0((ξ + η)n)

∣∣
η=0

= (0, 0, 0), n ̸= 1, 2, 3.

Then, using the expressions for Ψ and q0 in (4.13) and (4.8) and gathering terms, we find the reduced vector field

to be given by

dA0

dη
= A1 +O(3),

dA1

dη
= 2A2 +O(3),

dA2

dη
= − 3

m

(
A0A1 +

3

2
A2

1 + 3A0A2 −
m

2
A1β̃ −

1

4
A1c̃− 2mA2β̃ −

3

4
A2c̃+

71

5
A1A2 +

457

10
A2

2

)
+O(3).

(4.16)

4.3 Existence of solutions to reduced equations

It turns out that this three-dimensional ODE possesses a conserved quantity at leading order. Within level sets

of this conserved quantity, one finds at leading order a homoclinic solution. In order to prove persistence of the

homoclinic, one needs to prevent drift along level sets under perturbations of arbitrarily high order. To this aim,

we establish the existence of a quantity that is exactly conserved, which we compute to leading order following the

ideas in [2]. Within level sets of this exact conserved quantity, we then use a somewhat standard Melnikov-type

argument to find homoclinics for the perturbed equation.
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In order to derive a conserved quantity, we integrate (4.4) from 0 to L, L ∈ R, and simplify, to find

0 =− cQ(L) +

∫ L

L−1

Q(y − 1)Q(y + 1)dy −
∫ L+1

L

Q(y − 1)Q(y + 1)dy + β

∫ L+1

L

Q2(y)dy

−
(
−cQ(0) +

∫ 0

−1

Q(y − 1)Q(y + 1)dy −
∫ 1

0

Q(y − 1)Q(y + 1)dy + β

∫ 1

0

Q2(y)dy

)
,

for any L ∈ R. Hence Φ[Q], defined by

Φ[Q] = −cQ(0) +

∫ 0

−1

Q(y − 1)Q(y + 1)dy −
∫ 1

0

Q(y − 1)Q(y + 1)dy + β

∫ 1

0

Q2(y)dy, (4.17)

is translation invariant on solutions, i.e. Φ[Q] = Φ[SτQ], where Sτ is a translation operator. We therefore define

φ ≡ Φ[Q], as the equivalent of a true conserved quantity or first integral.

Then, letting Q(ξ) = m + A0 + A1ξ + A2ξ
2 + Ψ(A0, A1, A2, β̃, c̃) be an element of the center manifold, we insert

Q into (4.17) to obtain

φ[Q] = (−2m2 −m2β̃ −mc̃) + 4m

3
A2 + 2A2

0 − (2mβ̃ + c̃)A0 −
(
4mβ̃ +

3

2
c̃

)
A1 + 6A0A1 +

284

15
A0A2

+
142

15
A2

1 −
(
187m

15
β̃ +

22

5
c̃

)
A2 +

457

5
A1A2 +

50201

175
A2

2 +O(3).
(4.18)

We see that there exists a locally invertible change of coordinates where A2 maps to ϕ. We can solve (4.18) for A2

using the implicit function theorem, since 4m
3 ̸= 0, to find

A2 =
3

4m
ϕ +

3

4m
(2mβ̃ + c̃)A0 −

3

2m
A2

0 −
9

2m
A0A1 +

3

4m

(
4mβ +

3

2
c̃

)
A1 −

71

10m
A2

1

+
99

40m2
c̃ϕ+

561

80
β̃ϕ− 213

20m2
A0ϕ−

4113

80m2
A1ϕ−

1355427

11200m3
ϕ2 +O(3) =: g(A0, A1, ϕ) +O(3),

(4.19)

where ϕ is redefined to equal φ+ 2m2 +m2β̃ +mc̃, since the latter is also conserved. We also define Ã1 = dA0

dη =

A1 + O(3), and note that by the implicit function theorem we can find A1 in terms of Ã1 with an expansion.

Changing coordinates to (A0, Ã1, ϕ), we have the system

dA0

dη
= Ã1,

dÃ1

dη
= 2g(A0, Ã1, ϕ) +O(3),

dϕ

dη
= 0.

(4.20)

We now rescale. Let c̃ = β̃mc0, and rescale the spatial variable by choosing η = (3β̃)
1
2 (1 + c0

2 )
1
2 ζ, the amplitudes

by A0 = β̃m(1 + c0
2 )a0, Ã1 = β̃

3
2

√
3m(1 + c0

2 )
3
2 a1, and ϕ = β̃23m2(1 + c0

2 )
2ϕ̃. Substituting, we obtain the final

reduced system

da0
dζ

= a1,

da1
dζ

=
1

2
ϕ̃+ a0 − a20 − β̃

1
2

√
3

[
3(1 +

c0
2
)

1
2 a0a1 − (1 +

c0
2
)−

1
2 (2 +

3c0
4

)a1

]
+O(β̃),

dϕ̃

dζ
= 0.

(4.21)

We are looking for homoclinics to a0 = 0 since we are interested in homoclinics with background mass m. We

therefore choose ϕ̃ ≡ 0 as a solution to the third equation, reducing to

0 = a′′0 − a0 + a20 − β̃
1
2

√
3

[
3(1 +

c0
2
)

1
2 a0a

′
0 − (1 +

c0
2
)−

1
2 (2 +

3c0
4

)a′0

]
+O(β̃) =: F (a0, β̃), (4.22)
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where ′ = ∂ζ . Note that for β̃ = 0, this equation admits the explicit homoclinic solution a∗(ζ) =
3
2 sech

2( ζ2 ).

We now prove existence of homoclinic solutions to (4.22) using a standard Melnikov analysis.

Lemma 4.3 There exists β̃∗ > 0 such that for 0 < β̃ < β̃∗, (4.22) admits a homoclinic solution to a0 = 0 that is

uniformly O(β̃1/2)-close to a∗(ζ).

Proof. Let a∗(ζ) be as above. Linearizing (4.22) at a0 = a∗, β̃ = 0 yields the linear operator

L∗u = ∂ζζu+ 2a∗u− u.

We note that kerL∗ = span{a′∗}. Define the projection P onto kerL∗ by Pu = ⟨a′∗, u⟩, where ⟨·, ·⟩ denotes the

L2-inner product over R. Note also that L∗ is a self-adjoint operator. Then, writing a0 = a∗ + v + αa′∗, where

v ∈ (kerL∗)
⊥, we wish to solve F (a∗ + v + αa′∗, β̃) = 0. Without loss of generality, we fix a translate of any

potential solution by choosing α = 0, arriving at

0 = PF (a∗ + v, β̃)

0 = (1− P)F (a∗ + v, β̃).
(4.23)

By the implicit function theorem, since the linearization (1−P)DF (a∗, β̃) = (1−P)L∗ is invertible as an operator

from kerL⊥ to RanL, there exists a smooth function v = ψ(β̃) defined on a neighborhood of 0 such that (1 −
P)F (a∗ + ψ(β̃), β̃) = 0. Inserting ψ into the first equation, we get the reduced equation

0 = PF (a∗ + ψ(β̃), β̃)

=
〈
a′∗,L∗ψ(v)

〉
+ β̃

1
2

√
3

[
3(1 +

c0
2
)

1
2

〈
a′∗, a∗a

′
∗
〉
− (1 +

c0
2
)−

1
2 (2 +

3c0
4

)
〈
a′∗, a

′
∗
〉]

+O(β̃).
(4.24)

Noting that
〈
a′∗,L∗ψ(v)

〉
=

〈
L∗a

′
∗, ψ(v)

〉
= 0, and dividing by β̃

1
2 , we get

0 = 3(1 +
c0
2
)
〈
a′∗, a∗a

′
∗
〉
− (2 +

3c0
4

)
〈
a′∗, a

′
∗
〉
+O(β̃ 1

2 ). (4.25)

At β̃ = 0, we can explicitly find c0 =
4⟨a′

∗,a
′
∗⟩

3⟨a′′
∗ ,a

′′
∗ ⟩
− 2 = − 16

15 . Noting that (4.25) is smooth in δ = β̃
1
2 , there exists

c0 = c0(δ) for |δ| < δ∗, by the implicit function theorem, since ∂
∂c0
PF = 3

4 ⟨a
′′
∗ , a

′′
∗⟩ = 18

7 ̸= 0, such that (4.25) is

satisfied.

Then for 0 < β̃ < β̃∗ := δ2∗ there exists a solution to (4.22), with the scaled correction c0 to the speed given by

c0(β) = −
16

15
+O(β̃ 1

2 ).

Putting this together, we see that Theorem 1 is proven, and we have that a homoclinic solution to the system

(4.16) exists for β ≲ 2, with the speed parameter given by

c(β) = m(4− c0β̃) +O(β̃
3
2 ) =

4m

15
(7 + 4β) +O((2− β) 3

2 ).

5 Party drift: numerical continuation and stability

We explore existence and stability of traveling parties numerically for 0 < β < 2. The numerical results connect

the two asymptotics regimes β ≳ 0 (§ 3) and β ≲ 2 (§4). In particular, the results confirm the asymptotics and

existence results with good quantitative agreement, and provide a more global picture of drift in the parameter β.

In addition to these numerical continuation studies, we present a glimpse into the intricate question of stability

and selection: instabilities in the constant party tails grow and lead to the formation of new parties.
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5.1 Connecting the regimes – secant continuation

We compute traveling profiles throughout the entire range 0 < β < 2 using a Newton method to find fixed points

of the functional equation (4.5),

0 = −cq′(ξ) +m(2q(ξ − 1) + 2(β + 1)q(ξ + 1)− 2(β + 1)q(ξ)− q(ξ − 2)− q(ξ + 2) +N (q, β)), ξ ∈ R. (5.1)

We truncate the real line ξ ∈ R to ξ ∈ [−L/2, L/2] and impose (artificial) periodic boundary conditions. We then

discretize (5.1) with N points and a grid spacing h = L/N = 1/ℓ, ℓ ∈ N, so that shifted values can be evaluated

on the grid, using a 4th-order finite difference approximation for the derivative.

The linearization at a given profile q∗ possesses a two-dimensional generalized kernel, at least, generated by q′∗ from

translations and by q∗ from mass scaling. We therefore add constraints:
∫
ξq∗ = 0 eliminates translations, and∫

q∗ =M fixes the mass. We compensate for the lack of a Lagrange multiplier associated with the mass constraint

through the introduction of a dummy mass loss term µq(ξ). In summary, we solve the system

−cq′(ξ) +m
[
2q(ξ − 1) + 2(β + 1)

(
q(ξ + 1)− q(ξ)

)
−q(ξ − 2)− q(ξ + 2) +N (q, β)

]
+ µq = 0, ξ ∈ [−L

2
,
L

2
],

(5.2)∫ L/2

−L/2

ξq(ξ)dξ = 0, (5.3)∫ L/2

−L/2

(q(ξ)−m)dξ = 1, (5.4)

q(−L/2) = q(L/2), (5.5)

after discretization in ξ for the N + 2 variables (q, c, µ) using a Newton method. We then add the parameter

β as a variable and a standard secant condition to the system (5.2)—(5.5) for numerical continuation in β. We

consistently find µ = 0 to machine precision as expected.

We implement secant continuation starting at β = 0.3, computing profiles and speeds as β varies. In the small-β

regime, we hold the total mass constant, and, as β approaches 2, we hold the mass of the uniform background

state constant, appropriately changing (5.4). The initial interval is of width L = 10 in x with N = 1030 total grid

points. The grid is refined adaptively as β → 0 by doubling the number of grid points when the second derivative

of q exceeds 0.03 in the sup norm, since the profiles develop corners at the peak and sides. As β ↗ 2, the profiles

get increasingly wider. We double the width L of the interval and the number of grid points whenever the number

of opinions at distance 0.2L from the center exceeds 0.01 of the peak value. We checked relative discretization and

truncation errors by reducing h and increasing L, and found errors typically of the order 10−7, always bounded by

10−4.

We see below in Figure 5.1a three examples of profiles as β varies. We also plot in Figure 5.1b the background

mass as a function of β when fixing
∫
(q−m∞) = 1, that is, fixing the net mass in the party relative to the constant

background distribution of opinions. Note that as β ↗ 2 this mass approaches infinity. As β → 0 the background

mass decays exponentially in 1
β and therefore is difficult to compute precisely due to limitations in tolerances for

the Newton method.
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Figure 5.1: (a) Party shape for β = .0006 (green), β = 1.08 (blue), and β = 1.92 (purple), with net mass mparty = 1. (b) Plot of β

against the value of the uniform background mass m∞ needed to support a party of size 1.

From the secant continuation one also obtains the speed c of the profiles as β varies. In Figure 5.2 below, we see

the relationship between speed and β normalized over total mass, party mass, and background mass, respectively.

When β is small, we fix the mass of the party at 1 and plot the speed, comparing it to its theoretical value from

the drift speed calculations, including the numerically computed β3/2 correction. As β approaches 2 we fix the

uniform background mass and compare the speed with its theoretical value calculated in §4.3. In all cases we find

excellent quantitative agreement with the leading-order predictions.
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Figure 5.2: Numerically computed speed for varying β holding the sum of the background mass and party mass constant ((a)), holding

the party mass constant ((b)), and holding the background mass constant ((c)), with theoretical value shown in red in (b) and (c). .

5.2 Stability: direct simulations, convective stability, and pushed fronts

Since the uniform background state of a drifting party is unstable for 0 < β < 2, drifting parties will typically

not be stable in a strict sense. In fact, the instability of the background state is reflected in unstable continuous

spectrum of the linearization. One then would wish to determine if the instability in the background affects the

traveling party; that is, whether perturbations grow locally in a vicinity of the party, or whether perturbations are

advected away from the center of the party, decaying locally uniformly while growing in norm. This distinction

is commonly referred to as the difference between an absolute instability, where perturbations grow locally, and a

convective instability, where perturbations decay locally uniformly in the frame comoving with the party.

To a good approximation, this question is answered by comparing the spreading speed of perturbations of the

uniform state Pn = m∞, n ∈ Z with the speed of the traveling party. Spreading speeds, in most scenarios, are

determined as pulled or pushed speeds. In the case of pulled speeds, the spreading is determined by the linear

equation, whereas for pushed speeds, the nonlinearity accelerates the propagation. We therefore start with the

computation of the linear, pulled spreading speed; see [33, 22, 5] for background and spreading in the non-biased

case. In fact, spreading is mediated by pulled fronts, at the pulled, linear spreading speed, in the non-biased case

as demonstrated in [5].

Recall the dispersion relation for the linearized equation at the uniform state Pj ≡ m,

−iω = m(−2 cos(2σ) + (4 + 2β) cos(σ)− (2 + 2β) + iβ sin(σ)).
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Then, through a saddle point analysis [33, 5], the linear propagation velocity for any given β is given by

v =
dω

dσ
=

Im[ω]

Im[σ]
, (5.6)

after solving the second, complex equation for the complex variable σ ∈ C. Figure 5.3a shows the numerical speeds

v with β ∈ [0, 2] and m = 1, and Figure 5.3b compares this linear spreading speed for m = m∞(β) with the party

speed.
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Figure 5.3: (a) Spreading speed of instabilities for β ∈ [0, 2] for m = 1 (b) Party speed (blue) and linear spreading speed (red) for

β ∈ [0, 2], with m = m∞(β).

We find that the linear spreading speed of instabilities is less than the speed of the party for β ∈ (0, 2), which

suggest that the party is linearly convectively unstable.

We explore the possibility of a nonlinear instability, mediated by an analogue of a pushed front, through direct

simulations. There, we do see evidence of faster than linear propagation. We simulate (2.2) in an adaptively

moving frame in order to compute the spreading speed of instabilities, initializing at a small localized perturbation

of the uniform state Pj ≡ 1. For all β, we see evidence of transient pulled fronts in the wake, which give way to

sequences of parties traveling at a larger than linear speed. The initial transient of pulled front propagation is

longer for smaller values of β. The effect is shown in space-time plots (in a stationary frame) with initial conditions

given as localized, small perturbations at n = 0 of a uniform state m = 1. The transient pulled front is most clearly

visible in the first plot, β = 0.35, where we see a large single traveling party begin to form at t = 50 and overtake

the pulled front at t = 75. As β increases, the transient pulled front has a narrow wake and is quickly reached by a

large party that forms in its wake. In the right panel of Figure 5.4, the pulled front is visible from about t = 10 to

t = 50. In this right panel, one also sees that after the initial nucleation of a large party that overtakes the pulled

front, more large parties form subsequently spreading with similar speeds larger than the linear speed. The same

effect occurs for smaller values of β, albeit on larger time scales.

17



-300 -250 -200 -150 -100 -50 0   50  100 150 

opinion site n

80

70

60

50

40

30

20

10

0 

ti
m

e

-450 -400 -350 -300 -250 -200 -150 -100 -50 0   50  100 150 

opinion site n

120

110

100

90 

80 

70 

60 

50 

40 

30 

20 

10 

0  

ti
m

e

Figure 5.4: Space-time plots for β = .35 (left) and β = 0.95 (right), with the initial instability at n = 0.

In conclusion, we suspect that the traveling parties are convectively stable, that is, observable, for long transients.

The nonlinear process in the wake ultimately results in the creation of a train of traveling parties of comparable

size, that remain well separated, traveling at similar speeds.

A complete description of dynamics, either on a constant background, or on a zero background with resulting loss

of mass, appears quite intricate. The space-time plots presented here suggest a similarity with phenomena observed

in excitable media in simulations and experiments, coined trace-firing and backfiring [7, 28], both of which are also

poorly understood mathematically.

6 Non-coherence for other bias terms

Different bias mechanisms can generate dynamics very different from the dynamics in equation (2.2) that we

analyzed thus far. We present here briefly phenomena caused by two other forms of bias, namely bias in the

compromise process and linear bias mimicking a transport term. For the former, propagation is blocked at one-site

parties; for the latter, we find diffusive dissipation of the party, similar to the dynamics of the bounded confidence

model with diffusion studied in [4]. We think of those two scenarios as evidence that the self-incitement mechanism

of (2.2) is rather special in allowing coherent movement of parties.

6.1 Bias in the compromise process

A natural mechanism for introducing bias would be in the compromise process itself; that is, to consider an equation

such as
dPn

dt
= (2− β)Pn+1Pn−1 − (1− β)PnPn+2 − PnPn−2), (6.1)

where agents interact in the same way as in (2.1), but the probability of changing the opinion to the compromise

opinion is not equal for the two interacting agents. Another formulation is to include bias in nearest-neighbor

interactions and consider the equation

dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(Pn+1Pn − PnPn−1), (6.2)

where nearest-neighbor interactions lead to agents moving to the left with probability β.

In both cases (6.1) and (6.2), the bias does not induce persistent drift of existing parties. In fact, one- and two-site

parties are also equilibria of (6.1), and one-site parties are equilibria of (6.2). As a result, parties do not drift

at all in (6.1). In (6.2), one can mimic the analysis in §3 and find a drift speed near two-site parties, which

vanishes at one-site parties. The result agrees well with direct numerical simulations which find two site parties
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evolving towards one-site parties, which are one-sided stable, similar to saddle-node equilibria. One can think

of this blocking of motion at one-site parties as a pinning phenomenon, reflecting the discreteness of the opinion

space, similar to the rather well understood pinning of front and pulse propagation in discrete or inhomogeneous

media [1].

We note however that the dynamics in (6.2) resulting from the perturbation of a spatially constant equilibrium

with the resulting formation of multiple parties is rather complex and does involve movement of parties, but at

non-constant speeds, mediated by both the bias effect on single parties and the interaction between parties.

6.2 Non-incitement bias

All bias terms considered thus far are quadratic, modeling person-to-person interactions, and preserve the quadratic

scaling invariance of the dynamics. The arguably simplest possible bias terms would model spontaneous change

of opinion in one direction, without need for interaction between agents, and thus be represented by a linear term

of the form β(Pn+1 − Pn), with variants β(Pn+ℓ − Pn)/ℓ, ℓ = 2, 3, . . .. Up to scaling, this term can be viewed as a

spatial discretization of the shift term ut = ux in a continuous opinion space x ∈ R. The resulting equation is

dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(Pn+ℓ − Pn)/ℓ, (6.3)

with several possible scalings depending on initial conditions. Numerically, we observe drift of single parties as

expected, with initial speed β at leading order. Expanding the one-sided differentce Pn+1 − Pn into derivatives,

we find at second order an effective diffusion, which indeed is observable in the dynamics and leads to mass loss

in the party similar to the observations in [4]. Figure 6.1a below shows the loss of mass from the party, defined as

all opinions within 5 sites of the peak, into the tail and leading edge over time. Figure 6.1b shows the self-similar

shape of the leading edge when scaled horizontally by t−
1
2 , mimicking the profiles in [4]. The tail, however, appears

to grow exponentially in time at first, then becomes diffusive as the mass of the party no longer is significant; see

also Figure 6.1a. The effect of mass loss can also be understood in the small-β perturbation analysis of §3, where at
higher order, the drift term generates growth at sites with distance 3 or more to the party. In fact, for long-range

coupling ℓ > 2, the effect appears at first order in β and the mass loss is correspondingly more pronounced.
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7 Discussion

We presented results on the effect of bias in the bounded confidence model. Roughly speaking, the bounded

confidence model supports localized clusters, including a one-parameter family roughly parameterized by the

position of the cluster in space. One expects that introduction of bias leads to a drifting movement of clusters.

We analyze this drifting motion in two limits, small and large bias. Notably, we prove rigorously that coherent

movement of parties on a constant background distribution of opinions is possible for quadratic self-incitement

bias in the large bias regime β ≲ 2. Numerically, we find such coherent motion for all values of bias 0 < β < 2.

For small values of β, the constant background distribution is exponentially small in the parameter.

Technically, we used a geometric singular perturbation analysis to derive drift speeds in the small bias regime and

a nonlocal center manifold analysis to find coherent drifting parties for β ≲ 2. The analysis in the latter case is

possibly of independent interest, demonstrating the simplicity of calculations in the recently introduced framework

of center manifolds without a phase space. Within the narrow focus on coherent drifting parties, a major open

question is to establish rigorously existence, drift speeds, and size of background state in the regime β ≳ 0.

Beyond coherent drifting parties, we touched on the evolution near unstable constant states. We find modulation

equations familiar from fluid dynamics, such as the Korteweg-deVries or the Kuramoto-Sivashinsky equation and

variations thereof. Observed dynamics in simulations appear to involve complex dynamics of formation and

interaction of parties.

Interesting questions arise when attempting to quantify mass loss in incoherent drifting parties. Geometric singular

perturbation theory at a single party predicts mass accumulation in sites further away from the center of the party,

possibly at high or beyond all orders in β depending on the bias term. It would be interesting to quantify these

effects and, for quadratic self-incitement bias, to contrast with the existence of coherent drifting parties on a

constant background, relating for instance the size of the constant background to the rate of mass loss.

We noted that stability questions in the context of bias are subtle, due to the instability of the constant background

state and the complexity of the dynamics in the evolution of perturbations. In fact, it appears that even without

bias, stability of parties against perturbations, say small in ℓ∞ is not known.
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