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25030 Besançon cedex, France

Eric Lombardi
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Abstract

We study the stability of spatially periodic solutions to the Kawahara equation, a fifth

order, nonlinear partial differential equation. The equation models the propagation of

nonlinear water-waves in the long-wavelength regime, for Weber numbers close to 1/3

where the approximate description through the Korteweg-de Vries (KdV) equation breaks

down. Beyond threshold, Weber number larger than 1/3, this equation possess solitary

waves just as the KdV approximation. Before threshold, true solitary waves typically do

not exist. In this case, the origin is surrounded by a family of periodic solutions and only

generalized solitary waves exist which are asymptotic to one of these periodic solutions at

infinity. We show that these periodic solutions are spectrally stable at small amplitude.
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1 Introduction

We consider the Kawahara equation

∂tu = ∂5
xu− ε∂3

xu + u∂xu, (1.1)

in which ε is a real parameter. This equation has been derived by Kawahara [11] as a model for

water waves in the long-wave regime for moderate values of surface tension, Weber numbers

close to 1/3; see [18] for a rigorous result on its validity in the water-wave problem. For such

Weber numbers the usual description of long water waves via the Korteweg-de Vries (KdV)

equation fails since the cubic term in the linear dispersion relation vanishes and fifth order

dispersion becomes relevant at leading order, ω(k) = k5 +εk3. Positive (resp. negative) values

of the parameter ε in (1.1) correspond to Weber numbers larger (resp. smaller) than 1/3. The

linear dispersion relation is monotone for positive ε and possesses two extrema for negative ε.

The Kawahara equation (1.1) gives an appropriate description of several phenomena observed

in the dynamics of the water-wave problem for Weber numbers close to 1/3. We refer, in par-

ticular, to questions concerning solitary-wave dynamics. In the water-wave problem, solitary

waves exist for Weber numbers larger than 1/3; see [1]. These solitary waves are similar to the

ones found in the KdV equation, and therefore often referred to as KdV-like solitary waves

or true solitary waves. For Weber numbers smaller than 1/3, true solitary waves typically do

not exist [9, 21]. The speed of small-amplitude solitary waves would be close to the group

velocity ω′(0) = 0 of large-wavelength perturbations. In this parameter regime, this speed is

in resonance with the phase speed of periodic wave trains that correspond to the nontrivial

zeroes of the linear dispersion relation (k = ±
√
|ε|, for ε < 0). Therefore, instead of solitary

waves that decay to a constant amplitude, we find here generalized solitary waves that decay

towards these small periodic waves at their tails [8, 20]. Actually, these generalized solitary

waves exist for very small amplitudes of the background periodic wave trains: with respect to

the speed of the solitary wave c, the amplitude of the solitary wave scales with c, whereas the

amplitude of the background waves can be chosen to be exponentially small in c (but not zero).

The same situation, existence and non-existence of solitary waves, and existence of generalized

solitary waves, is observed in the Kawahara equation (1.1) for positive and negative values of

ε, respectively; see [2, 5, 10].

The dynamics of KdV-like solitary waves has been studied in much detail in the context

of the KdV equation; see for example [16, 12]. Some stability results are also available for

the Kawahara equation [6] and the water-wave problem [4, 13]. We are not aware of results

concerning the dynamics of generalized solitary waves beyond their mere existence.

A first step towards a stability analysis for this type of waves is the study of stability prop-
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erties for the periodic waves arising at their tails. In dissipative systems, stability of periodic

waves has been studied both with periodic boundary conditions and with respect to localized

perturbations on the real line; see [3, 15, 19] for Evans function approaches to linearized sta-

bility and [17, 14] for approaches to a nonlinear stability analysis. In dispersive equations,

the Hamiltonian structure can provide energy-type stability criteria when periodic boundary

conditions are imposed. Little seems to be known in the physically more interesting case of

spatially localized (in particular aperiodic) perturbations of the underlying periodic pattern.

In particular, for the Kawahara equation above, we are not aware of any stability result for

periodic waves, neither in a spatially periodic setup, nor on the unbounded real line.

The purpose of this paper is to investigate the spectral stability of the periodic wave trains

at the tail of the generalized solitary waves of the Kawahara equation (1.1), with respect to

localized and bounded perturbations. We prove that periodic travelling waves with speed c are

spectrally stable, that is, the spectrum of the linearization about these waves is contained in

the imaginary axis, provided their amplitude A satisfies A = o(|c|5/4). Outside this parameter

regime, instabilities may occur, but detecting them turns out to be a very difficult task. The

spectral analysis of the linearized operator is performed in L2(R) and Cb(R), implying that

the perturbations are either localized or uniformly continuous on the unbounded real line,

respectively. In fact the spectra coincide in both cases, and they can be described as the

union of the point spectra to a family of operators with periodic boundary conditions using

Bloch wave decomposition. We find the point spectra of the latter operators employing mainly

perturbation arguments, a careful analysis of the linear dispersion relation, and a bifurcation

analysis for small eigenvalues. The method presented here may be applied to other dispersive

equations as well. For the KdV equation, our method shows that periodic travelling waves are

spectrally stable at small amplitude (see Remark 3.1). The crucial ingredients to the analysis,

besides a proper general setup, reduce to a spectral gap argument for large eigenvalues (Lemma

4.2), and the computation of an Evans function type determinant (Lemma 6.7 (vi)).

The paper is organized as follows. The existence of periodic waves is stated in Section 2.

In Section 3 we formulate the main result on spectral stability and describe the spectrum of

the linearization about the periodic waves with the help of the Bloch wave decomposition.

The linear dispersion relation is analyzed in Section 4. We locate the spectrum for Bloch

wavenumbers bounded away from zero in Section 5, and for small Bloch wavenumbers in

Section 6.

Acknowledgments The authors gratefully acknowledge financial support by DAAD/Pro-

cope, Nr. D/0031082 and F/03132UD. Arnd Scheel was partially supported by the National

Science Fondation through grant DMS-0203301.
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2 Existence of periodic waves

In this section, we recall the existence result for periodic solutions to the Kawahara equation

(1.1).

We consider (1.1) with ε < 0, and rescale x, t, and u such that ε = −1. We look for solutions

travelling with constant speed c from right to left. In a comoving frame, replacing x + ct by

x, these solutions are stationary solutions to

∂tu = −c∂xu + ∂5
xu + ∂3

xu + u∂xu, (2.1)

and therefore satisfy

−cu + ∂4
xu + ∂2

xu +
1
2
u2 = C,

in which C is an arbitrary constant. As a remnant of the Galilean invariance of the equation

(2.1), u 7→ u + α, c 7→ c + α, in the equation above the constant C can be set to 0. In the

following, we therefore restrict to

−cu + ∂4
xu + ∂2

xu +
1
2
u2 = 0. (2.2)

We point out that this choice of coordinates and scalings is actually used in the construction of

generalized solitary waves. They are found for c > 0, as homoclinic orbits connecting periodic

orbits of small amplitude. In the next theorem we state the existence of these periodic orbits,

together with some properties which are needed in our stability analysis. We give a short

proof of this result for (2.2), and refer to [10, Chapter 4] for an existence result in a more

general context.

Theorem 1 There exist positive constants c0 and a0 such that for any c ∈ (−c0, c0), the

equation (2.2) has a one-parameter family of even, periodic solutions (ϕa,c)a∈(−a0,a0) of the

form

ϕa,c(x) = pa,c(kx), (2.3)

in which k = k(a, c) and pa,c is 2π-periodic in its argument. Moreover, the following properties

hold.

(i) The map k : (−a0, a0)× (−c0, c0) → R is analytic and

k(a, c) = k0(c) + ck̃(a, c),

where

k0(c) =
(

1 +
√

1 + 4c

2

)1/2

, k̃(a, c) =
∑
n≥1

k̃2n(c) a2n,
∣∣k̃2n(c)

∣∣ ≤ K0

ρ2n
0

, (2.4)

for any a, c, and some positive constants K0 and ρ0 > a0.
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(ii) The map (a, c) 7→ pa,c : (−a0, a0)× (−c0, c0) → H4(R/2πZ, R) is analytic and

pa,c(z) = ac cos(z) + c
∑

n, m ≥ 0, n + m ≥ 2

n−m 6= ±1

p̃n,m(c) ei(n−m)zan+m, (2.5)

in which p̃n,m(c) are real numbers such that p̃n,m(c) = p̃m,n(c) with∣∣p̃n,m(c)
∣∣ ≤ C0

ρn+m
0

, (2.6)

for any c, and some positive constant C0.

(iii) The Fourier coefficients p̂q(a, c) of the 2π-periodic function pa,c,

pa,c(z) =
∑
q∈Z

p̂q(a, c)eiqz,

are real and satisfy p̂0(a, c) = O(ca2) and p̂q(a, c) = O(c|a||q|), q 6= 0, as a → 0.

Moreover, the map a 7→ p̂q(a, c) is even (resp. odd) for even (resp. odd) values of q.

Proof. We look for periodic solutions to (2.2) with wavenumber k. We normalize the period

to 2π by setting z = kx, and find the equation

−cu + k4∂4
zu + k2∂2

zu +
1
2
u2 = 0. (2.7)

The linear part of this equation defines a closed linear operator L(c, k) on the space L2(R/2πZ)

of 2π–periodic functions which are locally square integrable, with domain H4(R/2πZ). For

c ∼ 0, c 6= 0 this operator has a two-dimensional kernel spanned by e±iz if k = k0(c), where

k0(c) is given by (2.4). We construct periodic solutions to (2.7) by using a Lyapunov-Schmidt

reduction for k close to k0(c).

We set k = k0(c) + ck̃, and

u(z) =
1
2
Aceiz +

1
2
Āce−iz + cv(z), (2.8)

in which A ∈ C, and v ∈ H4(R/2πZ) satisfies

v̂±1 =
1
2π

∫ π

−π
v(z)e∓izdz = 0.

By substituting (2.8) into (2.7) we obtain an equation of the form

Lcv = N(v,A, Ā, k̃, c), (2.9)

where

Lcv =
k0(c)4∂4

zv + k0(c)2∂2
zv − cv

c
,

5



and N(0, 0, 0, k̃, c) = 0. Here the operators Lc are defined for c 6= 0 only. We transform (2.9)

into a system which is well defined at c = 0 as well.

The kernel of Lc is two-dimensional and spanned by e±iz. We denote by P the spectral

projection onto the kernel of Lc, defined for any u ∈ L2(R/2πZ) by Pu = û1e
iz + û−1e

−iz,

where û±1 are the Fourier coefficients of u corresponding to the modes e±iz. Since Pv = 0,

the equation (2.9) is equivalent to

Lcv = (id− P )N(v,A, Ā, k̃, c), 0 = PN(v,A, Ā, k̃, c). (2.10)

The restriction of Lc to (id−P )H4(R/2πZ), the space orthogonal to the kernel, has a bounded

inverse given by

L−1
c v = −v̂0 +

∑
|n|≥2

cv̂n

k0(c)4n4 − k0(c)2n2 − c
einz,

for any v ∈ (id− P )L2(R/2πZ), v =
∑

n6=±1 v̂neinz. This formula shows that the inverse L−1
c

can be extended to c = 0, and that the operators L−1
c form a family of bounded operators

depending analytically upon c. Therefore, the system (2.10) is equivalent to

v = L−1
c (id− P )N(v,A, Ā, k̃, c) (2.11)

0 = PN(v,A, Ā, k̃, c) (2.12)

which is well defined for any c in some neighborhood of the origin.

With the help of the implicit function theorem, we may solve (2.11). We find a unique

solution v = V∗(A, Ā, k̃, c) ∈ (id − P )H4(R/2πZ) that depends analytically upon (A, Ā, k̃, c)

in a neighborhood of the origin of diag(C2) × R2. Here, diag(C2) = {(z, z̄) ∈ C2} ∼ R2.

Furthermore, the uniqueness of this solution implies that

V∗(0, 0, k̃, c) = 0.

The invariance of (2.7) under translations z 7→ z + ζ and under the reflection z 7→ −z enforces

the relations

V∗(A, Ā, k̃, c)(z + α) = V∗(Aeiα, Āe−iα, k̃, c)(z), V∗(A, Ā, k̃, c)(−z) = V∗(Ā, A, k̃, c)(z).

By substituting the solution V∗(A, Ā, k̃, c) of (2.11) into (2.12) and using the explicit formula

for the projection P we obtain the solvability conditions

Jc(A, Ā, k̃, c) =
∫ π

−π

Aeis + Āe−is

2
N(V∗, A, Ā, k̃, c)(s)ds = 0 (2.13)

Js(A, Ā, k̃, c) =
∫ π

−π

Aeis − Āe−is

2i
N(V∗, A, Ā, k̃, c)(s)ds = 0. (2.14)
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The invariances of (2.7) mentioned above imply that Jc and Js satisfy

Jc(Aeiα, Āe−iα, k̃, c) = Jc(A, Ā, k̃, c) = Jc(Ā, A, k̃, c),

Js(Aeiα, Āe−iα, k̃, c) = Js(A, Ā, k̃, c) = −Js(Ā, A, k̃, c).

By taking α = −2argA in the equalities for Js we obtain

Js(Ā, A, k̃, c) = Js(A, Ā, k̃, c) = −Js(Ā, A, k̃, c),

so that Js ≡ 0 and the condition (2.14) is always satisfied.

In the equalities for Jc we set α = −argA and find Jc(A, Ā, k̃, c) = Jc(|A|, |A|, k̃, c), so that

the solvability condition (2.13) becomes

Jc(a, a, k̃, c) = 0,

where a belongs to a neighborhood of the origin in R. By using the explicit formula for N

and the symmetries of V∗ we find that

Jc(a, a, k̃, c) = −a2
(
π(4k0(c)3 − 2k0(c))k̃ + J(a, k̃, c)

)
,

in which J is analytic in its arguments, even with respect to a, and satisfies J(0, 0, c) =

∂ekJ(0, 0, c) = 0. By arguing again with the implicit function theorem, we obtain a solution

k̃∗(a, c) of Jc(a, a, k̃, c) = 0 for small a and c. Furthermore, k̃∗(a, c) is even in a, so that the

function k(a, c) = k0(c) + ck̃∗(a, c) verifies the properties stated in part (i) of the theorem.

The arguments above show that (2.11)–(2.12) has a unique solution

(v, k̃) = (V∗(A, Ā, k̃∗(|A|, c), c), k̃∗(|A|, c)),

for any small complex number A and real c. Substitution of v = V∗(A, Ā, k̃∗(|A|, c), c) into

(2.8) yields a 2π-periodic solution to (2.7). The periodic solutions pa,c in the theorem are the

ones obtained by restricting to A ∈ R,

pa,c(z) = ac cos(z) + cva,c(z), va,c(z) = V∗(a, a, k̃∗(a, c), c).

The properties of pa,c stated in (ii) are deduced from the analyticity and the symmetries of

the function V∗(A, Ā, k̃, c). Finally, (iii) is a consequence of the expansion (2.5).

Remark 2.1 (i) Note that in the result and proof, we restricted the amplitude A ≤ ca0 to

a small sector of (A, c)–plane. This is sufficient for our purpose of a description of the

waves at the tail of the generalized solitary waves. However, it is not difficult to derive a

full bifurcation diagram for the existence of periodic solutions. The unfolding near c = 0
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can be studied using Lyapunov-Schmidt reduction on the kernel of the linearization in

the subspace of even functions, spanned by cos x and 1. The bifurcation equations for

u = a0 + a1 cos x + h.o.t can be solved for a1:

a2
1 = −2(δk2 − c2) + O(3), a0 = c− 2δk + a2

1/96 + O(2),

where δk = k − 1. In particular, there are unique periodic solutions inside two sectors

in the (c, δk)–plane bounded by two analytic curves with tangent vectors c = ±δk in

c = δk = 0. However, we do not know whether all these periodic solutions are stable.

Our stability results below are concerned with waves in a sufficiently small sector along

the boundary of the two cones.

(ii) The formula (2.5) shows, in particular, that p−a,c(z) = pa,c(z + π), so the periodic solu-

tions found for a < 0 are translations by a half-period of the ones for a > 0. Therefore,

we can, without loss of generality, take a ≥ 0.

(iii) In Theorem 1, the family of periodic waves is parameterized by the amplitude a (see

(2.5)). We may equivalently parameterize the family by the wavenumber k, since the

map Ψ : (0, a0)× (−c0, c0) → R2 defined through

Ψ(a, c) = (k(a, c), c),

is locally invertible and injective on (0, a0)× (0, c0) and on (0, a0)× (−c0, 0).

3 The main result

We state our main result, that claims spectral stability of the family of periodic solutions

which are described in Theorem 1, and gives a detailed characterization of the spectrum of

the linearization at these periodic solutions.

We are interested in the stability of the periodic solutions in Theorem 1 as steady solutions

to the evolution problem (2.1). We set

u(x, t) = ϕa,c(x) + v(x, t),

and obtain the evolution problem for the perturbations v,

∂tv = Aa,cv +N (v),

in which the linear terms Aa,cv and the nonlinear terms N (v) are given by

Aa,cv = ∂5
xv + ∂3

xv − c∂xv + ∂x(ϕa,cv), N (v) = v∂xv.
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We regard Aa,c as a linear operator acting on a Banach space X of x-dependent functions.

There are several possible choices for this Banach space, each of them corresponds to a certain

class of perturbations v. Here, we take either X = L2(R), for spatially localized perturbations,

or X = Cb(R), for bounded uniformly continuous perturbations.

The main result in this paper is the following theorem on the spectrum of the linear operator

Aa,c. Spectral stability of the periodic solutions ϕa,c for sufficiently small a and c is an

immediate consequence.

Theorem 2 There exist positive constants c1 and a1, such that for any c ∈ (−c1, c1) and

a ∈ (−a1|c|1/4, a1|c|1/4) the spectrum of the linear operator Aa,c in L2(R), or Cb(R), lies on

the imaginary axis.

Remark 3.1 (Wave trains in the KdV equation) A similar result of spectral stability

can be obtained for the periodic travelling waves of the KdV equation

∂tu = ∂3
xu + u∂xu.

In this case the analysis is much simpler, in particular since the speed of the wave can be scaled

out of the equation. Indeed, in the frame of reference moving with the speed c of the wave the

equation becomes

∂tu = −c∂xu + ∂3
xu + u∂xu,

in which x+ ct has been replaced by x just like in the equation (2.1). In contrast to (2.1), here

we can eliminate c by setting u(x, t) = |c|v(|c|1/2x, |c|3/2t). We find the rescaled equation

∂tv = ∂3
xv − sign(c)∂xv + v∂xv, (3.1)

in which we may take sign(c) = −1, since the sign of the coefficient of ∂xv in (3.1) is changed

by the translation v 7→ v + 2sign(c). The steady solutions of (3.1) are easily found – and

well-known – by a phase-plane analysis for the corresponding ODE,

∂2
xv + v +

1
2
v2 = 0.

One finds a homoclinic connection to −2,

h(x) = −2 + 3 sech2
(x

2

)
,

which corresponds to the KdV solitary wave, and a one-parameter family of periodic orbits

surrounding the origin and filling the region inside this homoclinic orbit,

ϕa(x) = pa(k(a)x), pa(z) = a cos z + O(a2), k(a) = 1 + O(a2),
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in which pa is 2π-periodic in its argument. (Notice that the choice sign(c) = 1 is preferred when

solitary waves are analyzed, since then the corresponding homoclinic orbit is a connection to

the origin.) Spectral stability of the wave trains in the KdV equation can be studied along the

lines of this paper, giving stability for all small amplitude waves. This confirms formal results

by Whitham for large-wavelength perturbations, derived by means of an asymptotic expansion

of the associated Lagrangian (the so-called variational method). We emphasize that the proof

for the KdV equation is much simpler, partly because of the simpler, cubic dispersion relation,

but also because a scaling symmetry allows for a parameterization of the waves by only one

parameter, the amplitude a, largely simplifying the Blochwave analysis in Section 6.

The remainder of this paper is occupied with the proof of Theorem 2. The proof relies on a

bifurcation analysis for the linearized problem. Since the coefficients of the operator Aa,c are

periodic, the spectrum can be described as the union of point spectra to a family of operators

with compact resolvent using Bloch wave decomposition. We then trace the point spectrum

out of the bifurcation point a = c = 0 for all possible Bloch wavenumbers γ.

We first normalize the period of the waves to 2π by replacing kx by x. In the scaled coordinates,

we have to study the operator

Aa,cv = k5∂5
xv + k3∂3

xv − ck∂xv + k∂x(pa,cv), (3.2)

in which k = k(a, c) and pa,c are given by Theorem 1. In particular, both k and pa,c depend

analytically upon a and c. We consider the operator Aa,c as a closed linear operator in L2(R)

with domain of definition H5(R), and in Cb(R) with domain C5
b(R). We denote by specL2(Aa,c)

and specCb
(Aa,c) its spectrum in L2(R) and Cb(R), respectively. The following result, which

holds for general differential operators with periodic coefficients, shows that the two spectra

coincide. Moreover, it gives a simple characterization of these sets in terms of the kernel of

Aa,c − λid in Cb(R); see for example [3] for a proof of this result in the case of Cb(R), which

can be easily adapted to L2(R).

Proposition 3.2 The following equalities hold

specL2(Aa,c) = specCb
(Aa,c) = {λ ∈ C ; kerCb

(Aa,c − λid) 6= {0}}.

Furthermore, λ ∈ C belongs to one of these sets if and only if there exists a nonzero function

v ∈ C5
b(R) of the form v(x) = u(x)eiγx, with u 2π–periodic and γ ∈ [−1

2 , 1
2), such that

Aa,cv − λv = 0.

This proposition shows that in order to determine the spectrum of Aa,c, we have to find all

values of λ ∈ C such that there exists a nontrivial solution to the linear non-autonomous
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ordinary differential equation

λv = Aa,cv = k5∂5
xv + k3∂3

xv − ck∂xv + k∂x(pa,cv), (3.3)

of the form v(x) = u(x)eiγx, with a 2π–periodic function u and some real parameter γ ∈
[−1

2 , 1
2). Equivalently, we may determine all values λ ∈ C such that there is a nontrivial

2π-periodic solution to the equation

λu = k5(∂x + iγ)5u + k3(∂x + iγ)3u− ck(∂x + iγ)u + k(∂x + iγ)(pa,cu), (3.4)

for some γ ∈ [−1
2 , 1

2). We denote by Lγ,a,c the linear operator defined by the right hand side

of the equation (3.4). We consider this operator as a closed operator in the space L2(R/2πZ)

with domain H5(R/2πZ). The following result is then a direct consequence of Proposition

3.2.

Corollary 3.3 Consider the linear operator Lγ,a,c : H5(R/2πZ) → L2(R/2πZ) defined by

Lγ,a,cu = k5(∂x + iγ)5u + k3(∂x + iγ)3u− ck(∂x + iγ)u + k(∂x + iγ)(pa,cu),

for γ ∈ [−1
2 , 1

2) and λ ∈ C. Then the spectrum of Lγ,a,c satisfies

spec(Lγ,a,c) = {λ ∈ C ; ker(Lγ,a,c − λid) 6= {0}}.

Moreover, we have that

specL2(Aa,c) = specCb
(Aa,c) =

⋃
γ∈[− 1

2
, 1
2
)

spec(Lγ,a,c).

From now on we denote by spec(Aa,c) the spectrum of Aa,c in both L2(R) and Cb, since the

two spectra coincide. This corollary shows that in order to determine the spectrum of the

operators Aa,c we have to solve (3.4) for λ ∈ C and γ ∈ [−1
2 , 1

2) in H5(R/2πZ). Theorem 2

then follows from the following proposition.

Proposition 3.4 (i) For every γ∗ ∈ (0, 1
2) there exists c∗2 > 0 1 such that for any c ∈(

−c∗2, c
∗
2

)
, a ∈ (−a0, a0), and γ ∈ [−1

2 , 1
2) with |γ| ≥ γ∗, we have

spec(Lγ,a,c) ⊂ iR.

(ii) There exist positive constants c3, a3, γ3 such that for any c ∈ (−c3, c3), γ ∈ (−γ3, γ3),

and a ∈ (−a3|c|1/4, a3|c|1/4), we have

spec(Lγ,a,c) ⊂ iR.

1For the rest of the paper we distinguish constants depending upon γ∗ ∈ (0, 1
2
) by the superscript ∗.
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To prove this proposition we regard the operator Lγ,a,c as a perturbation of a skew adjoint

operator with constant coefficients L0
γ,a,c by an operator L1

γ,a,c with small periodic coefficients,

more precisely, we write

Lγ,a,c = L0
γ,a,c + L1

γ,a,c,

with
L0

γ,a,cu = k5(∂x + iγ)5u + k3(∂x + iγ)3u− ck(∂x + iγ)u,

L1
γ,a,cu = k(∂x + iγ)(pa,cu).

Note that L0 and L1 depend implicitly on a and c via k = k(a, c). Section 4 is devoted to

the study of L0
γ,a,c. In Section 5 we compute the spectrum of Lγ,a,c for γ bounded away from

zero (Proposition 3.4 (i)), and in Section 6 we consider values of γ close to zero (Proposition

3.4 (ii)).

Remark 3.5 (i) The spectrum of Lγ,a,c is symmetric with respect to the imaginary axis.

More precisely, we have

λ ∈ spec(Lγ,a,c) ⇔ −λ ∈ spec(Lγ,a,c) ⇔ −λ ∈ spec(L−γ,a,c),

where we exploited that pa,c is real and even in the first and second relation, respectively.

(ii) Assume that a 6= 0 and c 6= 0. Then, the derivative with respect to x of pa,c satisfies (3.4)

with γ = 0 and λ = 0, due to translation invariance of (2.1) in x. Consequently, 0 always

belongs to the spectrum of L0,a,c and Aa,c. Furthermore, the geometric multiplicity of

0 as an eigenvalue of L0,a,c is at least two, and its algebraic multiplicity at least three.

A principal eigenvector is given by the constant function 1/k(a, c), k(a, c) being the

wavenumber of the periodic wave. A second principal eigenvector is the derivative of the

periodic wave with respect to the speed c in the parameterization of the family of periodic

solutions by the wavenumber k and the speed c (see Remark 2.1). We write pa,c = qk,c,

so that qk,c satisfies

k5∂5
xqk,c + k3∂3

xqk,c − ck∂xqk,c + kqk,c∂xqk,c = 0.

By differentiating this equality with respect to c we find

L0,k,c (∂cqk,c) = k∂xqk,c,

so ∂cqk,c/k is a principal vector to the eigenvalue 0 of L0,a,c. Of course, the difference

∂cqk,c − 1 belongs to the kernel of L0,k,c, which is then two-dimensional, at least, since

∂cqk,c−1 is an even function and the derivative with respect to x of pa,c an odd function.

We prove later, Lemma 6.7, that for a 6= 0 and c 6= 0, the geometric and algebraic

multiplicities of 0 are precisely two and three, respectively.
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4 Study of the unperturbed operator

This section is devoted to the study of the unperturbed operator L0
γ,a,c. Classical results

from linear operator theory and a standard Fourier analysis show that L0
γ,a,c has the following

properties.

Lemma 4.1 Assume that c ∈ (−c0, c0), a ∈ (−a0, a0), and γ ∈ [−1
2 , 1

2).

(i) The linear operator L0
γ,a,c is a closed linear operator in L2(R/2πZ) with dense domain

H5(R/2πZ).

(ii) L0
γ,a,c is skew-adjoint and has compact resolvent.

(iii) The spectrum of L0
γ,a,c consists of a countable number of purely imaginary eigenvalues

with finite multiplicities.

(iv) Any eigenvalue λ ∈ spec(L0
γ,a,c) is semi-simple, and it is given by λ = iω0

n(γ, a, c) in

which

ω0
n(γ, a, c) = k5(γ + n)5 − k3(γ + n)3 − ck(γ + n), (4.1)

for some n ∈ Z. The unique (up to scalar multiples) eigenvector associated to iω0
n(γ, a, c)

is einx.

(v) The resolvent operator R0
γ,a,c(λ) = (λid− L0

γ,a,c)
−1 is given by

R0
γ,a,c(λ)(f) =

∑
n∈Z

f̂neinx

λ− iω0
n(γ, a, c)

,

where f ∈ L2(R/2πZ), and f̂n represent the Fourier coefficients of f , f =
∑
n∈Z

f̂neinx.

A more detailed analysis of the dispersion relation (4.1) yields the following result on the

relative position on the imaginary axis of the eigenvalues λ = iω0
n(γ) in the spectrum of L0

γ,a,c.

Lemma 4.2 (i) There exist positive constants c4 and m4 such that for any n, p ∈ Z with

n 6= p and |n| ≥ 2 or |p| ≥ 2, and for any c ∈ (−c4, c4), a ∈ (−a0, a0), and γ ∈ [−1
2 , 1

2),

the following inequality holds:

|ω0
n(γ, a, c)− ω0

p(γ, a, c)| ≥ m4(1 + |p|)(1 + |n|).

(ii) For every γ∗ ∈ (0, 1
2), there exist c∗5 > 0 and m∗

5 > 0 such for any n, p ∈ Z with n 6= p,

any c ∈ (−c∗5, c
∗
5), a ∈ (−a0, a0), and γ ∈ [−1

2 , 1
2) with γ∗ ≤ |γ|, the following inequality

holds:

|ω0
n(γ, a, c)− ω0

p(γ, a, c)| ≥ m∗
5(1 + |p|)(1 + |n|).
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Using Fourier analysis, we deduce immediately from this lemma the following corollary.

Corollary 4.3 Let λ0 be an eigenvalue of L0
γ,a,c, λ0 = iω0

n(γ, a, c), n ∈ Z, and assume that

either |n| ≥ 2, γ ∈ [−1
2 , 1

2), a ∈ (−a0, a0), c ∈ (−c4, c4), (H1)

or γ ∈ [−1
2 , 1

2), |γ| ≥ γ∗ > 0, a ∈ (−a0, a0), c ∈ (−c∗5, c
∗
5). (H2)

Then, the following properties hold.

(i) λ0 is a simple eigenvalue and the kernel of L0
γ,a,c − λ0id is spanned by einx. The corre-

sponding spectral projection Πn is given by

Πn(f) =
1
2π

(∫ π

−π
f(s)e−ins ds

)
einx.

(ii) The restriction of iω0
n(γ, a, c)id − L0

γ,a,c to the space orthogonal to its kernel, Hn =

(id−Πn)L2(R/2πZ), has a bounded inverse R0
γ,a,c,n given by

R0
γ,a,c,n(f) =

∑
p6=n

f̂peipx

iω0
n(γ, a, c)− iω0

p(γ, a, c)
,

where f ∈ (id − Πn)L2(R/2πZ), and f̂p represent the Fourier coefficients of f , f =∑
p6=n

f̂peipx. Furthermore,

‖R0
γ,a,c,n‖L(Hn,V 1

n ) ≤
M0

1 + |n|
, (4.2)

in which V 1
n = (id−Πn)H1(R/2πZ) and

M0 = 1
m4

, under hypothesis (H1),

M0 = 1
m∗

5
, under hypothesis (H2).

Here m4 and m∗
5 are the constants defined in Lemma 4.2.

The resolvent estimate (4.2) guarantees robustness of spectral gaps under perturbations with

growth O(n) in the Fourier mode, which is precisely the type of perturbation encountered

by the derivative kpa,c∂xu. It is a direct consequence of the spectral gaps between large

eigenvalues provided in Lemma 4.2, and the central (and basically only) ingredient to the

proof of absence of unstable eigenvalues outside a neighborhood of the origin.

The rest of this section is occupied by the proof of Lemma 4.2.

Proof. [of Lemma 4.2.] We first compute a lower bound for |ω0
n(γ, a, c) − ω0

p(γ, a, c)|, for

n, p ∈ Z, n 6= p, and |n| ≥ 3 or |p| ≥ 3. We set N = n + γ, P = p + γ, and R2 = N2 + P 2. We

then have

|ω0
n(γ, a, c)− ω0

p(γ, a, c)| = k5|n− p|
∣∣∆5 − 1

k2 ∆3 − c
k4

∣∣ ,
14



where

∆5 = N4 + P 4 + N2P 2 + NP (N2 + P 2) ≥ N4 + P 4 + N2P 2 − (N2 + P 2)2

2
=

N4 + P 4

2
≥ (N2 + P 2)2

4
=

R4

4
,

and

0 < ∆3 = N2 + P 2 + NP ≤ N2 + P 2 +
N2 + P 2

2
=

3
2
R2.

Since |n− p| ≥ 1, k = 1 +O(c) by (2.4), and since for |n| ≥ 3 or |p| ≥ 3, and any γ ∈ [−1
2 , 1

2),

we have R2 ≥ 25
4 , we obtain

|ω0
n(γ, a, c)− ω0

p(γ, a, c)| ≥ k5R4

(
1
4
− 3

2
1

k2R2
− |c|

k4R4

)
≥ k5R4

(
1
4
− 6

25k2
− 16|c|

252k4

)
≥ 1

200
R4,

(4.3)

for |c| sufficiently small, and any a ∈ (−a0, a0). Moreover,

1 + |N | = 1 + |n + γ| ≥ 1 + |n| − |γ| ≥ 1
2

+ |n| ≥ 1 + |n|
2

,

so that
(1 + |n|)(1 + |p|)

4
≤ (1 + |N |)(1 + |P |) ≤ (2 + N2 + P 2) = 2 + R2. (4.4)

Combining (4.3) and (4.4) we obtain,

|ω0
n(γ, a, c)− ω0

p(γ, a, c)|
(1 + |n|)(1 + |p|)

≥ 1
800

R4

2 + R2
≥ m4 > 0, (4.5)

for some positive constant m4. This inequality holds for |c| sufficiently small, a ∈ (−a0, a0),

γ ∈ [−1
2 , 1

2), and n, p ∈ Z with n 6= p, and |n| ≥ 3 or |p| ≥ 3.

To finish the proof of the lemma it remains to find a positive lower bound for the modulus of

Ωn,p(γ, a, c) := ω0
n(γ, a, c)− ω0

p(γ, a, c) for |n| ≤ 2, |p| ≤ 2, and n 6= p. Observing that

Ωn,p(γ, a, c) = −Ωp,n(γ, a, c) = −Ω−n,−p(−γ, a, c), (4.6)

we only have to consider Ω1,0, Ω1,−1, and Ω2,p for −2 ≤ p ≤ 1. We give the calculations for

Ω2,1 and Ω1,0, the other quantities can be treated in a similar way.

For Ω2,1, we set x = 1+γ ≥ 1
2 , and find, for |c| sufficiently small, a ∈ (−a0, a0), and γ ∈ [−1

2 , 1
2)

that

Ω2,1(γ, a, c) = k5(5x4 + 10x3 + 10x2 + 5x + 1)− k3(3x2 + 3x + 1)− ck

= 5k5x4 + 10k5x3 + k3(10k2 − 3)x2 + k3(5k2 − 3)x + k5 − k3 − ck

≥ 7
2x2 + x− 1

2 ≥
7
8 > 0,

where we have used the fact that k = 1 +O(c).
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For Ω1,0 we only need a lower bound for |γ| ≥ γ∗. We have

Ω1,0(γ, a, c) = 5k5γ4 + 10k5γ3 + γ2(10k5 − 3k3) + k3γ(5k2 − 3) + k5 − k3 − ck,

and

|Ω1,0(γ, a, 0)| = |5γ4 + 10γ3 + 7γ2 + γ| ≥ 3
8
|γ|,

for γ ∈ [−1
2 , 1

2). Since

|Ω1,0(γ, a, c)− Ω1,0(γ, a, 0)| ≤ sup
|a|≤a0,|γ|≤ 1

2
,|c|≤c0

∣∣∣∣∂Ω1,0

∂c
(γ, a, c)

∣∣∣∣ |c| =: M |c|,

we find

|Ω1,0(γ, a, c)| ≥ |Ω1,0(γ, a, 0)| − |Ω1,0(γ, a, c)− Ω1,0(γ, a, 0)| ≥ 3
8
|γ| −M |c| ≥ m∗

5γ
∗,

for any |γ| ≥ γ∗, a ∈ (−a0, a0), c ∈ (−c∗, c∗) with c∗ = c∗(γ∗) sufficiently small.

5 Spectrum for γ bounded away from zero

This section is devoted to the proof of Proposition 3.4 (i): we show that for γ bounded away

from zero the spectrum of Lγ,a,c is contained in the imaginary axis. This result is proved

in two steps. First, we locate the spectrum of Lγ,a,c in a neighborhood of the spectrum of

L0
γ,a,c (Lemma 5.1), and then show the absence of spectrum outside of this neighborhood

(Lemma 5.2). Notice that for these values of γ the spectrum of L0
γ,a,c consists only of simple

eigenvalues. However, we cannot use classical perturbation results, since we have here infinitely

many eigenvalues.

Notation: We write B(z, r) for the ball of radius r centered at z in the complex plane.

Lemma 5.1 For every γ∗ ∈ (0, 1
2) there exist c∗6 > 0 and r∗6 > 0 such that for every c ∈

(−c∗6, c
∗
6), a ∈ (−a0, a0), γ ∈ [−1

2 , 1
2) with |γ| ≥ γ∗, and every n ∈ Z, the operator Lγ,a,c

has a unique eigenvalue iωn(γ, a, c) in B
(
iω0

n(γ, a, c), r∗6(1 + |n|)
)

and this eigenvalue is purely

imaginary. Moreover, the map (a, c) 7→ ωn(γ, a, c) is analytic, and ωn(γ, 0, 0) = ω0
n(γ, 0, 0) =

(n + γ)5 − (n + γ)3.

Lemma 5.2 For every γ∗ ∈ (0, 1
2) there exist c∗7 > 0 such that for every c ∈ (−c∗7, c

∗
7),

a ∈ (−a0, a0), γ ∈ [−1
2 , 1

2) with |γ| ≥ γ∗, the spectrum of Lγ,a,c satisfies

spec(Lγ,a,c) ⊂
⋃
n∈Z

B
(
iω0

n(γ, a, c), r∗6(1 + |n|)
)
,

in which r∗6 is the constant given in Lemma 5.1. Consequently, spec(Lγ,a,c) ⊂ iR.

16



Proposition 3.4 (i) is a direct consequence of Lemma 5.1 and 5.2. The remainder of this section

is occupied by the proofs of these two lemmas. The key point in Lemma 5.1 is that c∗6 > 0

and r∗6 > 0 only depend upon γ∗ and not upon n.

Proof. [of Lemma 5.1] We fix γ∗ ∈ (0, 1
2), γ ∈ [−1

2 , 1
2) with |γ| ≥ γ∗, a ∈ (−a0, a0) and n ∈ Z.

Then iω0
n(γ, a, c) has the properties stated in Corollary 4.3. In particular, the restriction of

iω0
n(γ, a, c) id − L0

γ,a,c to Hn = (id − Πn)L2(R/2πZ) has a bounded inverse R0
γ,a,c,n, with a

bound in L(Hn, V 1
n ) given by 1

m∗
5(1+|n|) , where V 1

n = (id − Πn)H1(R/2πZ). We denote by

un(x) = einx the eigenvector associated with the eigenvalue iω0
n(γ, a, c) of L0

γ,a,c.

In order to determine the eigenvalues of Lγ,a,c in some neighborhood B
(
iω0

n(γ, a, c), r∗(1+|n|)
)

of the eigenvalue iω0
n(γ, a, c), we have to find pairs (λ, u) ∈ C × H5(R/2πZ), with u 6≡ 0,

|λ− iω0
n(γ, a, c)| < r∗ (1 + |n|), and

Lγ,a,cu− λu = 0. (5.1)

The key point of this analysis is that we want to solve this equation for r∗ and |c| < c∗

sufficiently small depending only upon γ∗ and, in particular, not upon n.

Notice that (iω0
n(γ, a, 0), un) verifies (5.1) at c = 0, since Lγ,a,0 = L0

γ,a,0. We therefore seek

(λ, u) in the form

λ = iω0
n(γ, a, c) + (1 + |n|)µ, u = αun + v, (5.2)

in which µ, α ∈ C and Πnv = 0. By substituting (5.2) into (5.1) we find the equivalent system

ΠnL1
γ,a,c(αun + v)− µ(1 + |n|)αun = 0

(L0
γ,a,c − iω0

n(γ, a, c))v + (id−Πn)L1
γ,a,c(αun + v)− µ(1 + |n|)v = 0.

Here, the linear operator L1
γ,a,c is a relatively bounded perturbation of L0

γ,a,c, with norm

‖L1
γ,a,c‖L(H1,L2) ≤ M1|c|, (5.3)

for some positive constant M1, and any γ ∈ [−1
2 , 1

2), a ∈ (−a0, a0), and c ∈ (−c0, c0). Since

the restriction of iω0
n(γ, a, c)id− L0

γ,a,c to Hn is invertible we can rewrite the system above as

αµ =
1

1 + |n|
πnL1

γ,a,cv +
1

1 + |n|
πnL1

γ,a,c(αun) (5.4)

v = R0
γ,a,c,n

(
(id−Πn)L1

γ,a,c − (1 + |n|)µ
)
v + R0

γ,a,c,n(id−Πn)L1
γ,a,c(αun), (5.5)

in which R0
γ,a,c,n is given by Corollary 4.3 (ii), and where for f ∈ L2(R/2πZ), πn(f) = f̂n =

1
2π

∫ π
−π f(s)e−insds.

We claim that α 6= 0. Indeed, if α = 0, we deduce from (5.5), (5.3) and (4.2) that

‖v‖
H1 ≤

1
m∗

5

(
M1|c|
1 + |n|

+ |µ|
)
‖v‖

H1 ≤
1

m∗
5

(M1|c|+ |µ|) ‖v‖
H1 .
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Hence, for |c| < m∗
5

2M1
and |µ| < m∗

5
2 the unique solution of (5.4), (5.5) is v = 0 which yields a

solution u = 0 to (5.1).

Since α 6= 0 and the equation (5.1) is linear, we may assume without loss of generality that

α = 1. Then, (5.4), (5.5) read

(µ, v) = Nn,γ,a(µ, v; c), (5.6)

whereNn,γ,a is analytic from C×H1(R/2πZ)×(−c∗5, c
∗
5) into C×H5(R/2πZ) ⊂ C×H1(R/2πZ).

In particular, if (µ, v) ∈ C ×H1(R/2πZ) satisfies (5.6), then v lies in H5(R/2πZ). Thus we

can only look for solutions (µ, v) of (5.6) in C × H1(R/2πZ). Here µ may be chosen small,

|µ| < r∗, but not v which belongs to the entire space H1(R/2πZ). However, if

|c| ≤ m∗
5

4M1
, |µ| ≤ m∗

5

4
,

we can solve (5.5) for v, v = v(µ), and find an a priori bound

‖v‖H1 ≤
2M1|c|

m∗
5

.

Consequently, it suffices to solve (5.6) for

(µ, v) ∈ U∗ := B

(
0,

m∗
5

4

)
×B

(
0,

2M1c
∗

m∗
5

)
⊂ C×H1(R/2πZ),

and sufficiently small c ∈ (−c∗, c∗). We do this by a fixed point argument. Indeed, a di-

rect calculation using the estimates for the linear operators R0
γ,a,c,n and L1

γ,a,c, shows that

Nn,γ,a(·, ·; c) : U∗ → U∗ is well defined for c∗ sufficiently small. In addition, for any (µ1, v1)

and (µ2, v2) in U∗, we find

‖Nn,γ,a(µ1, v1; c)−Nn,γ,a(µ2, v2; c)‖C×H1 ≤ M1|c|‖v1 − v2‖H1 +
M1|c|
m∗

5

‖v1 − v2‖H1

+
1

m∗
5

‖v1‖H1 |µ1 − µ2|+
1

m∗
5

|µ2|‖v1 − v2‖H1

≤
(

1 +
1

m∗
5

)
M1c

∗‖v1 − v2‖H1 +
1
4
‖v1 − v2‖H1 +

2M1c
∗

(m∗
5)2

|µ1 − µ2|,

so that Nn,γ,a(·, ·; c) is a contraction on U∗ provided c∗ is small enough.

From the arguments above, we conclude that there exist c∗6 sufficiently small, r∗6 = m∗
5

4 , such

that for any c ∈ (−c∗6, c
∗
6), a ∈ (−a0, a0), γ ∈ [−1

2 , 1
2) with |γ| ≥ γ∗, and any n ∈ Z, the system

(5.6) admits a unique solution (µ, v) :=
(
µ1

n(γ, a, c), v1
n(γ, a, c)

)
in B(0, r∗6)×H1(R/2πZ). This

solution yields a unique eigenvalue iω0
n(γ, a, c)+µ1

n(γ, a, c) of Lγ,a,c in B(iω0
n(γ, a, c), r∗6(1+|n|)).

Finally, the symmetry of the spectrum of Lγ,a,c (see Remark 3.5 (i)) implies that this eigenvalue

is purely imaginary.
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Proof. [of Lemma 5.2] As in the proof of Lemma 5.1, we write Lγ,a,c = L0
γ,a,c+L1

γ,a,c. Assume

that λ 6∈
⋃

n∈Z
B
(
iω0

n(γ, a, c), r∗6(1 + |n|)
)
. Then

|λ− iωn(γ)| ≥ r∗6(1 + |n|),

for every n ∈ Z, and Lemma 4.1 (v) ensures that λid− L0
γ,a,c is invertible with

‖(λid− L0
γ,a,c)

−1‖L(L2,H1) ≤
1
r∗6

.

This estimate and the inequality (5.3) imply that λid−Lγ,a,c is invertible for sufficiently small

c ∈ (−c∗7, c
∗
7), and the lemma is proved. Notice that the constant c∗7 only depends upon γ∗

and does not depend upon a, λ and γ with |γ| ≥ γ∗, since r∗6 and the constant M1 in (5.3) are

independent of γ, a, c, and λ.

6 Spectrum for γ close to zero

This section is devoted to the proof of Proposition 3.4 (ii): we prove that for γ close to zero the

spectrum of Lγ,a,c is included in the imaginary axis. We use again a perturbation argument,

by regarding Lγ,a,c as a perturbation of L0
γ,a,c by L1

γ,a,c. The main difference between |γ| small

and γ bounded away from zero is that L0
γ,a,c has only simple isolated eigenvalues in the second

case whereas in the first case, L0
γ,a,c has three eigenvalues which are arbitrary close and which

coincide at γ = 0. In order to determine the spectrum of Lγ,a,c for |γ| small, we proceed in

three steps. We first show in Section 6.1 that for |γ| small, the spectrum of Lγ,a,c separates

into two parts,

spec(Lγ,a,c) = σ1 ∪ σ2, σ1 ⊂ B(0, 1), σ2 ⊂ C \B(0, 1).

Next, we analyze σ2 in Section 6.2. We argue as in Section 5 for γ bounded away from

zero, and show that σ2 consists of simple, isolated eigenvalues which are all purely imaginary.

Finally, in Section 6.3, a careful bifurcation analysis enables us to determine σ1 by unfolding

the triple zero eigenvalue of L0
γ,a,c at γ = 0.

6.1 Separation of spectrum

From the dispersion relation (4.1) we deduce the following separation property for the spectrum

of L0
γ,a,c.

Lemma 6.1 There exist positive constants c8 and γ8 such that for any c ∈ (−c8, c8), a ∈
(−a0, a0), and γ ∈ (−γ8, γ8), the eigenvalues iω0

n = iω0
n(γ, a, c) of L0

γ,a,c satisfy

{iω0
0, iω

0
1, iω

0
−1} ⊂ B(0, 1

2), {iω0
n ; n ∈ Z, |n| ≥ 2} ⊂ C\B(0, 2).
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This lemma provides us with a spectral decomposition through the circle C(0, 1). Inside this

circle we find the three eigenvalues iω0
0, iω0

1, iω0
−1, the remaining eigenvalues being simple and

located outside this circle. We denote by E the invariant subspace spanned by the eigenvectors

1, eix, and e−ix, associated to the three eigenvalues iω0
0, iω0

1, and iω0
−1, respectively. Let

Π0 : L2(R/2πZ) → E be the corresponding spectral projection,

Π0(f) = π0(f) + π+1(f)eix + π−1(f)e−ix,

in which

π0(f) = f̂0 =
1
2π

∫ π

−π
f(x) dx, π±1(f) = f̂±1 =

1
2π

∫ π

−π
f(x)e∓ix dx.

We also consider the spaces H = (id−Π0)L2(R/2πZ) and V = H∩H5(R/2πZ), and decompose

the resolvent operator,

R0
γ,a,c(λ) = R0(λ) + R̃0

γ,a,c(λ), (6.1)

in which

R0(λ)(f) =
∑

n=0,±1

f̂neinx

λ− iω0
n(γ, a, c)

, R̃0
γ,a,c(λ)(f) =

∑
|n|≥2

f̂neinx

λ− iω0
n(γ, a, c)

.

Notice that the space E and the projection Π0 do not depend upon γ, a, and c.

We now turn back to the operator Lγ,a,c. This operator is a relatively bounded perturbation

of L0
γ,a,c with small relative bound O(c). Classical perturbation theory for linear operators

shows that the three eigenvalues of L0
γ,a,c inside the circle C(0, 1) persist as the only spectral

values of Lγ,a,c inside this circle. More precisely, we have the following result.

Lemma 6.2 There exists a positive constant c9 ≤ c8, such that for any c ∈ (−c9, c9), a ∈
(−a0, a0), and γ ∈ (−γ8, γ8), the linear operator Lγ,a,c has the following properties.

(i) The circle C(0, 1) separates the spectrum of Lγ,a,c into two disjoint parts,

spec(Lγ,a,c) = σ1 ∪ σ2, σ1 ⊂ B(0, 1), σ2 ⊂ C \B(0, 1).

Inside this circle there are exactly three eigenvalues, counted with multiplicities.

(ii) The three dimensional space Eγ,a,c associated to the three spectral values inside the circle

C(0, 1), and the corresponding spectral projection Πγ,a,c are analytic in γ, a and c.

(iii) The three eigenvalues inside the circle C(0, 1) are the solutions λ of the equation

det (λΠγ,a,c −Πγ,a,cLγ,a,cΠγ,a,c) = 0, (6.2)

where the operator in the parentheses is considered as linear map from Eγ,a,c into itself.

20



(iv) The projection Πγ,a,c satisfies the equality

Πγ,a,c = Π0 +
1

2πi

∫
C(0,1)

∑
`≥1

R0
γ,a,c(λ)

(
L1

γ,a,cR
0
γ,a,c(λ)

)` dλ, (6.3)

in which R0
γ,a,c(λ) is the resolvent of L0

γ,a,c. Hence, Πγ,a,c is analytic with respect to

(γ, a, c).

Proof. The first three statements follow from the results in [7, Chapter IV, § 3.5]. Finally,

the last statement is obtained from the formula for the resolvent Rγ,a,c(λ) of Lγ,a,c,

Rγ,a,c(λ) = R0
γ,a,c(λ)

(
id− L1

γ,a,cR
0
γ,a,c(λ)

)−1 = R0
γ,a,c(λ) +

∑
`≥1

R0
γ,a,c(λ)

(
L1

γ,a,cR
0
γ,a,c(λ)

)`
,

and the Dunford integral formula for the projection.

6.2 Spectrum of Lγ,a,c outside B(0,1)

In this section we prove that the spectrum σ2 of Lγ,a,c outside B(0, 1) is included in the imag-

inary axis. This part of the spectrum of Lγ,a,c is located in a neighborhood of the eigenvalues

iω0
n(γ, a, c), |n| ≥ 2, of L0

γ,a,c. For sufficiently small c these eigenvalues satisfy Hypothesis

H1 in Corollary 4.3, and therefore share spectral gap properties with the eigenvalues for γ

bounded away from zero. Consequently, in order to locate σ2, we can proceed as in Section 5

for γ bounded away from zero. We have the following two results.

Lemma 6.3 There exist positive constants c10 ≤ c9 and r10 such that for any c ∈ (−c10, c10),

a ∈ (−a0, a0), γ ∈ (−γ8, γ8), and any n ∈ Z with |n| ≥ 2, the operator Lγ,a,c has a unique

eigenvalue iωn(γ, a, c) in B
(
iω0

n(γ, a, c), r10(1 + |n|)
)

and this eigenvalue is purely imaginary.

Moreover, the map (a, c) 7→ ωn(γ, a, c) is analytic, and ωn(γ, 0, 0) = ω0
n(γ, 0, 0) = (n + γ)5 −

(n + γ)3.

Lemma 6.4 There exists a positive constant c11 ≤ c10 a such that for any c ∈ (−c11, c11),

a ∈ (−a0, a0), and γ ∈ (−γ8, γ8), the spectrum of Lγ,a,c satisfies

σ2 = spec(Lγ,a,c) ∩
{
C \B(0, 1)

}
⊂
⋃
|n|≥2

B
(
iω0

n(γ, a, c), r10(1 + |n|)
)
.

Consequently, σ2 ⊂ iR.

The proofs of these two results are very similar to the ones of Lemma 5.1 and Lemma 5.2 in

Section 5, and we therefore omit the details. They both rely on the resolvent estimate (4.2),

in which we take M0 = 1
m4

here, while M0 = 1
m∗

5
was used in Section 5.
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6.3 Spectrum of Lγ,a,c inside B(0,1)

This last section is devoted to the study of the spectrum of Lγ,a,c inside the circle C(0, 1).

This part of the spectrum consists of precisely three eigenvalues counted with multiplicities.

These eigenvalues are solutions of the equation (6.2), and they can be located provided one

can compute and solve (6.2). This turns out to be a rather difficult task, in particular due to

the fact that the range Eγ,a,c of the projection Πγ,a,c is a three dimensional space depending

upon the parameters γ, a, and c. Such a direct calculation can be performed for the (much

simpler) KdV equation (see Remark 3.1), using the Taylor expansions in the two parameters

γ and a of the different quantities involved in (6.2). The presence of a third parameter c,

and the more complicated structure of the Kawahara equation make this calculation much

harder. Therefore, we choose here a slightly different approach. Instead of working in the

parameter dependent space Eγ,a,c, we work in the fixed space E spanned by the functions 1,

eix, and e−ix. In other words, we replace the spectral subspace Eγ,a,c associated to Lγ,a,c by

the spectral subspace E to L0
γ,a,c. This can be achieved via the next lemma.

Lemma 6.5 Consider the spectral subspace E to L0
γ,a,c spanned by the eigenvectors 1, eix,

and e−ix, associated to the three eigenvalues iω0
0, iω0

1, and iω0
−1, respectively, and Π0 the

corresponding spectral projection, defined in Section 6.1. There exists a positive constant c12 ≤
c11 such that for every c ∈ (−c12, c12), a ∈ (−a0, a0), and γ ∈ (−γ8, γ8), the projections Πγ,a,c

and Π0 realize isomorphisms between E → Eγ,a,c and Eγ,a,c → E, respectively. Consequently,

the three eigenvalues of Lγ,a,c inside the circle C(0, 1) are the solutions λ of the equation

det
(
Π0(λΠγ,a,c − Lγ,a,cΠγ,a,c)Π0

)
= 0, (6.4)

where again the operator in the parentheses is considered as a map from E0 to E0.

Proof. The two projections Πγ,a,c and Π0 have finite-dimensional range and verify

‖Πγ,a,c −Π0‖ =
∥∥∥ 1
2πi

∫
C(0,1)

∑
n≥1

R0
γ,a,c(λ)

(
L1

γ,a,cR
0
γ,a,c(λ)

)n dλ
∥∥∥

≤ M |c| < min
(

1
‖Πγ,a,c‖

,
1

‖Π0‖

)
,

for sufficiently small |c|, and some positive constant M , since on the circle C(0, 1) the resolvent

R0
γ,a,c(λ) is uniformly bounded (see Lemma 4.1 (v) and Lemma 6.1), and since ‖L1

γ,a,c‖ = O(|c|)
(see equation (5.3)). This inequality together with the result in Appendix B, imply that Πγ,a,c

and Π0 realize isomorphisms between their images, and the lemma is proved.

We now use (6.4) to locate the position of the three eigenvalues of Lγ,a,c inside the circle

C(0, 1). Notice that the right hand side of this formula is a polynomial in λ of degree 3, with
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coefficients depending analytically upon γ, a, and c (see Lemma 6.2 (iv)). We denote this

polynomial by D(γ, a, c)[λ], so that (6.4) reads

D(γ, a, c)[λ] := det
(
Π0(λ− Lγ,a,c)Πγ,a,cΠ0

)
= 0. (6.5)

Remark 6.6 From the symmetry properties of the linear operators Lγ,a,c we deduce that if

D(γ, a, c)[λ] = 0, then

D(γ, a, c)[−λ] = 0, D(−γ, a, c)[−λ] = 0, D(−γ, a, c)[λ] = 0.

Lemma 6.7 For every c ∈ (−c12, c12), a ∈ (−a0, a0), and γ ∈ (−γ8, γ8), the polynomial

D(γ, a, c)[λ] has the following properties.

(i) The coefficients of D depend analytically upon (γ, a, c) in some neighborhood of 0 in R3.

(ii) D(−γ, a, c)[λ] = −D(γ, a, c)[−λ] and D(γ,−a, c)[λ] = D(γ, a, c)[λ].

(iii) At a = 0, the three roots of D(γ, 0, c)[λ] are iω0
n(γ, 0, c), n = 0,±1.

(iv) At γ = 0, zero is a triple root of D(0, a, c)[λ], and D(0, a, c)[λ] = αλ3 with α = 1+O(a2c).

(v) Set λ = ikν with k = k(a, c) given in Theorem 1. Then

D(γ, a, c)[ikν] = (ik)3α(γ, a, c)∆′(γ, a, c)[ν],

where ∆′(γ, a, c)[ν] is a polynomial in ν of degree 3 with real coefficients which depend

analytically upon (γ, a, c) in some neighborhood of 0 in R3. Moreover, α(γ, a, c) = 1 +

O(a2|c|+ |γ|).

(vi) There exist positive constants c13 ≤ c12, a13, and γ13 ≤ γ8, such that for any c ∈
(−c13, c13), a ∈ (−a13|c|1/4, a13|c|1/4), and γ ∈ (−γ13, γ13), the polynomial ∆′(γ, a, c)[ν]

has three real roots. Consequently, the three roots of the polynomial D(γ, a, c)[λ] are

purely imaginary.

The last part of this lemma shows that the three eigenvalues of Lγ,a,c inside C(0, 1) are purely

imaginary. Consequently, the spectrum of Lγ,a,c in a neighborhood of the origin is purely

imaginary. This observation concludes the proof of Theorem 2.

Remark 6.8 A direct calculation using the explicit formulae (6.5), (6.3), and (6.1) shows

that in fact the coefficient α(γ, a, c) is also real. However, we do not need this fact in the proof

of the lemma.
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Remark 6.9 The regime where λ, γ ∼ 0 is usually referred to as the long-wavelength, small

frequency regime, where modulation equations can be derived. Our results so far show that,

on the linear level, all instabilities necessarily derive from instabilities in this long-wavelength

regime. A particular wedge of this long-wavelength regime is captured (formally) by the Witham

equations [22, §16.15].

Proof. [of Lemma 6.7] (i) Theorem 1 and Lemma 6.2 ensures that Πγ,a,c and Lγ,a,c depend

analytically on (γ, a, c). Hence this is also true for D(γ, a, c).

(ii) Set Aγ,a,c[λ] = Π0(λ− Lγ,a,c)Πγ,a,cΠ0, and we use the same notation for the 3× 3 matrix

associated to this operator in the basis {1, eix, ei−x}. Since Lγ,a,c anti-commutes with the

reflection operator Sf(x) = f(−x), L−γ,a,cS = −SLγ,a,c, we also have Π−γ,a,cS = SΠγ,a,c.

Consequently A−γ,a,c[λ]S = −SAγ,a,c[−λ], from which we deduce the first equality. Notice

that the matrix associated with the reflector S in the basis above is

S =


1 0 0

0 0 1

0 1 0

 . (6.6)

The second equality is obtained in the same way by arguing with the translation Tf(x) =

f(x + π) instead of S (see Remark 2.1 (i)).

The statement (iii) is an immediate consequence of the fact that Lγ,0,c = L0
γ,0,c.

For a 6= 0 and c 6= 0, the first part of (iv) follows from the Remark 3.5 (ii) which shows that

zero is an eigenvalue of L0,a,c with algebraic multiplicity three, at least, and the fact that L0,a,c

has exactly three eigenvalues inside the circle C(0, 1). Then D(0, a, c)[λ] = αλ3, and a direct

calculation using (6.5), (6.3), and (6.1) shows that α = 1 + O(a2c). For a = 0 or c = 0, (iv) is

obtained by direct explicit computations since Lγ,0,c = L0
γ,0,c and Lγ,a,0 = L0

γ,a,0.

(v) We set λ = ikν with k = k(a, c) given in Theorem 1. Since k is close to 1 and therefore

different from 0, we can write D(γ, a, c)[ikν] = (ik)3∆(γ, a, c)[ν], in which ∆(γ, a, c)[ν] is a

polynomial in ν of degree three,

∆(γ, a, c)[ν] = a∆ν3 + b∆ν2 + c∆ν + d∆. (6.7)

Here, the coefficients a∆, b∆, c∆, and d∆ depend analytically upon γ, a, c. The result in (iv)

implies that a∆ = 1 + O(a2|c|+ |γ|), so that we can write

∆(γ, a, c)[ν] = a∆∆′(γ, a, c)[ν], ∆′(γ, a, c)[ν] = ν3 + b′∆ν2 + c′∆ν + d′∆. (6.8)

For any root λ = ikν of D(γ, a, c)[λ], we have that ν is a root of ∆′(γ, a, c)[ν], and from

the Remark 6.6, we find that if ν is a root of ∆′(γ, a, c)[ν] then ν̄ is a root of ∆′(γ, a, c)[ν]
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as well. Since the coefficient of the leading term ν3 in the polynomial ∆′(γ, a, c)[ν] is 1, we

conclude that this polynomial has real coefficients, and (v) is proved. Moreover, since k and

the coefficients of D depend analytically on (γ, a, c) this is also true for the coefficients of ∆

and ∆′.

(vi) From (ii) we find that the coefficients b∆ and d∆ of the polynomial ∆(γ, a, c)[ν] are odd

in γ, that a∆ and c∆ are even in γ, and that a∆, b∆, c∆, d∆ are even in a. Therefore, b′∆

and d′∆ are odd in γ, c′∆ is even in γ, and b′∆, c′∆, d′∆ are even in a. Next, from (iv), we have

that b′∆ = c′∆ = d′∆ = 0 at γ = 0, so that we can write

b′∆ = b1
∆γ + O(γ3), c′∆ = c2

∆γ2 + O(γ4), d′∆ = d1
∆γ + d3

∆γ3 + O(γ5),

in which b1
∆, c2

∆, and dj
∆ depend upon a and c and are even in a.

The polynomial ∆′(γ, a, c)[ν] has three real roots if the discriminant

δ(γ, a, c) = 18b′∆c′∆d′∆ + b′2∆c′2∆ − 4b′3∆d′∆ − 4c′3∆ − 27d′2∆,

is positive. Notice that δ(γ, a, c) is analytic with respect to (γ, a, c) and even with respect to

both γ and a.

We prove in Appendix A that d1
∆ = 0, so that δ(γ, a, c) = O(γ6). From (iii) we find

δ(γ, 0, c) = 3136γ8 + O(|c|γ8 + γ10).

Next, since Lγ,a,0 = L0
γ,0,0, we have δ(γ, a, 0) = δ(γ, 0, 0), so that in the Taylor expansion of

δ with respect to γ, a, c there is no monomial of the form γnam with m ≥ 1. Finally, we take

into account the parity properties of δ, and obtain the expansion

δ(γ, a, c) = α216 a2cγ6 + α226 a2c2γ6 + α416 a4cγ6 + α426 a4c2γ6 + 3136γ8

+O(a2|c|3γ6 + a4|c|3γ6 + a6|c|γ6 + |c|γ8 + γ10).
(6.9)

We calculate the coefficients αmp6 in (6.9) in the following way.

1. We first compute explicitly, the coefficients k̃2j(c) and p̃n,m(c) of the power series (2.4)

and (2.5) for j ≤ 2 and n+m ≤ 4, and obtain the expansion for the frequency k and the

periodic orbit pa,c up to order a4. This is achieved by induction when identifying the

powers of a in (2.7) in which k and pa,c have been replaced by their power series (2.4)

and (2.5).

2. Next, using these explicit formulae for k and pa,c up to order a4, we deduce explicit

formulae, here again up to order a4, for L0
γ,a,c, L1

γ,a,c, R0
γ,a,c, and finally for D(γ, a, c)

and δ(γ, a, c). The expression obtained for δ(γ, a, c) is exact with respect to γ and c,

and up to order 4 in a.
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3. Expanding this last formula with respect to γ and c we finally compute αmp6 explicitly

for m ≤ 4 and p ≤ 2.

These long computations have been performed with the help of MAPLE. We finally get

α216 = 0, α226 =
308
3

, α416 = 0, α426 = 0,

so that

δ(γ, a, c) =
308
3

a2c2γ6 + 3136γ8 + O(a2|c|3γ6 + a4|c|3γ6 + a6|c|γ6 + |c|γ8 + γ10).

This quantity is positive if |c| is sufficiently small and a = o(|c|1/4), which we assumed in the

last part of the lemma.

Remark 6.10 Instabilities (corresponding to a negative discriminant δ(γ, a, c)) occur for 1 �
a � |c|

1
4 if one of the coefficients αm16 of amcγ6 in the Taylor expansion of δ(γ, a, c) does not

vanish. The explicit computation of these coefficients for m ≥ 6 turns out to be completely

intractable and we found no theoretical evidence that they should all vanish.

Appendix A

We show that the coefficient d1
∆ in the proof of Lemma 6.7 vanishes. The coefficient d′∆ in

(6.7) is obtained from

detAγ,a,c[0] = D(γ, a, c)[0] = (ik)3a∆∆′(γ, a, c)[0] = (ik)3a∆d′∆,

so that we have to show that the coefficient of the O(γ) term in the expansion of detAγ,a,c[0]

vanishes.

We write

Aγ,a,c[0] = −Π0Lγ,a,cΠγ,a,cΠ0 = −Π0(L0
γ,a,c + L1

γ,a,c)(Π
0 + Π1

γ,a,c)Π
0

= −L0
γ,a,cΠ

0 −Π0L1
γ,a,c(Π

0 + Π1
γ,a,c)Π

0 − L0
γ,a,cΠ

0Π1
γ,a,cΠ

0,

in which Π1
γ,a,c denotes the sum in the right hand side of (6.3),

Π1
γ,a,c =

1
2πi

∫
C(0,1)

∑
n≥1

R0
γ,a,c(s)

(
L1

γ,a,cR
0
γ,a,c(s)

)n ds.

Recall that L1
γ,a,c = k(∂x + iγ)(pa,c·). Then, we can write

Aγ,a,c[0] = −L0
γ,a,cΠ

0 − (∂x + iγ)Π0BΠ0, (A.1)
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in which B is a bounded linear operator. Here, we have used the fact that each term in the

sum in the explicit formula for Π1
γ,a,c contains at least one factor L1

γ,a,c, and that (∂x + iγ)

commutes with Π0 and R0
γ,a,c(s). From (A.1), we obtain

Aγ,a,c[0] = ik


γη0,0 γη0,1 γη0,−1

(γ + 1)η1,0 (γ + 1)η1,1 (γ + 1)η1,−1

(γ − 1)η−1,0 (γ − 1)η−1,1 (γ − 1)η1,−1

 , (A.2)

in which the coefficients ηi,j depend analytically upon γ, a, and c. Then detAγ,a,c[0] =

(ik)3γ(γ2−1)det(ηi,j), so that the O(γ) term in detAγ,a,c[0] vanishes if the determinant det(ηi,j)

vanishes at γ = 0. From the relation A−γ,a,c[0]S = −SAγ,a,c[0] and the explicit form (6.6) of

S, a direct calculation implies that at γ = 0 the matrix (ηi,j) has the form

(ηi,j)∣∣γ=0
=


η0
0,0 η0

0,1 η0
0,1

η0
1,0 η0

1,1 η0
1,−1

η0
1,0 η0

1,−1 η0
1,1

 ,

and a sufficient condition for its determinant to vanish is that η0
1,1 = η0

1,−1. We compute these

two coefficients with the help of A0,a,c[λ], and show that they are equal, so that det(ηi,j) = 0.

By arguing as for (A.2) we find

A0,a,c[ikν] = ik


ν 0 0

νδ0
1,0 + η0

1,0 νδ0
1,1 + η0

1,1 νδ0
1,−1 + η0

1,−1

νδ0
−1,0 − η0

1,0 νδ0
−1,1 − η0

1,−1 νδ0
−1,−1 − η0

1,1

 ,

in which δi,j are analytic functions in a and c, and η0
i,j are precisely the coefficients before.

Since detA0,a,c[λ] = αλ3, the coefficient of the linear term in ν in detA0,a,c[ikν] vanishes, so

that we have (η0
1,1)

2 = (η0
1,−1)

2. The Taylor expansion in (a, c) of η0
1,1 +η0

1,−1 can be computed

from the Taylor expansion of the periodic wave pa,c and the explicit formulae (6.5), (6.3), and

(6.1). At second order in a, we find

η0
1,1 + η0

1,−1 =
1
48

a2c2 + O(a3c + a2c3),

so that η0
1,1 + η0

1,−1 does not vanish in some open set of sufficiently small values of a and c.

Then η0
1,1−η0

1,−1 = 0 in this open set, and we conclude that η0
1,1−η0

1,−1 = 0 due to analyticity.

Appendix B

Lemma B.1 Let X be a Banach space and let Π and Π′ be two projections in L(X). Denote

by E and E′ the range of Π and Π′, respectively.

27



If Π has finite rank and

‖Π−Π′‖L(X)
< min

(
1

‖Π‖L(X)

,
1

‖Π′‖L(X)

)
,

then the two projections Π and Π′ realize isomorphisms between E′ → E and E → E′, respec-

tively. In particular, they have the same finite rank.

Proof. Observe that Π ◦Π′ ◦Π ∈ L(E) and that

Π ◦Π′ ◦Π = idE + Π ◦ (Π′ −Π) ◦Π.

Then, since Π|E = idE we get that

‖Π ◦ (Π′ −Π) ◦Π‖L(E)
< ‖Π‖L(X)

‖(Π′ −Π)‖L(X)
< 1.

Thus, Π ◦Π′ ◦Π is one to one from E onto E. In particular,

E = Π ◦Π′ ◦Π(E) = Π ◦Π′(E) ⊂ Π(E′) ⊂ E,

so that

Π(E′) = E, dim E ≤ dim E′ ≤ ∞.

Similarly we prove

Π′(E) = E′, dim E′ ≤ dim E < ∞.

This ensures that Π and Π′ have the same finite rank and realize isomorphisms between

E′ → E and E → E′, respectively.
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