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Abstract

We analyze the transition between pulled and pushed fronts both analytically and numerically
from a model-independent perspective. Based on minimal conceptual assumptions, we show that
pushed fronts bifurcate from a branch of pulled fronts with an effective speed correction that
scales quadratically in the bifurcation parameter. Strikingly, we find that in this general context
without assumptions on comparison principles, the pulled front loses stability and gives way
to a pushed front when monotonicity in the leading edge is lost. Our methods rely on far-field
core decompositions that identify explicitly asymptotics in the leading edge of the front. We
show how the theoretical construction can be directly implemented to yield effective algorithms
that determine spreading speeds and bifurcation points with exponentially small error in the
domain size. Example applications considered here include an extended Fisher-KPP equation,
a Fisher-Burgers equation, negative taxis in combination with logistic population growth, an
autocatalytic reaction, and a Lotka-Volterra model.

1 Introduction

Propagation into unstable states is often mediated by invasion fronts. One is interested both in the
speed of propagation and in the selected state in the wake of the invasion fronts. Examples of the
role of such fronts in experiment, computation, and analysis abound and we refer to [37] for a review.
At small amplitude, growth of disturbances is determined by the linearization at the unstable state.
Assuming that the dynamics in the leading edge are effectively governed by this linearized equation,
one can then derive a spreading speed for disturbances from a linear marginal stability criterion,
that is, finding the supremum of all speeds at which disturbances grow in a comoving frame; see
again [37], [5] for background from plasma physics where such questions were first studied, and [23]
for a more recent and detailed mathematical approach. Such linear predictions are clearly useful
and allow at times for explicit, algebraic characterizations of the invasion speed. Concluding that
such linear predictions are accurate for the nonlinear equation is usually very difficult analytically,
crucially because linear predictions are often incorrect: states selected in the wake are of finite,
non-small amplitude and nonlinearity can cause instabilities of an invasion process that propagates
at the linearly predicted spreading speed and lead to faster propagation. Such acceleration is usually
attributed to non-convex nonlinearities, weakly subcritical bifurcations, or generally competing
nonlinear driving and saturation. Fronts that mediate invasion at the linear speed are commonly
referred to as pulled fronts; fronts that mediate the invasion at faster speeds due to instability of
fronts at the linear spreading speeds are referred to as pushed fronts. The aim of this paper is to
analyze the transition from pulled to pushed front invasion from a bifurcation perspective, focusing
on minimal assumptions on existence of fronts and spectral properties of the linearization at the
front.
Our motivation originates in difficulties with practical attempts at determining spreading speeds.
On the one hand, computing linear spreading speeds can often be accomplished with high accuracy
and without actually tackling a nonlinear PDE in an unbounded domain but rather an (often
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quite challenging) algebraic problem. In fact, measuring the front speed in direct simulations is
quite difficult because of the slow convergence of speeds c(t) towards the predicted linear speed clin,
c(t) − clin ∼ t−1; see [8, 9, 26, 19, 13, 4]. Finding fronts and their speeds in a bounded domain of
size L directly using for instance a Newton method where a phase condition that centers the front
profile in the middle of the computational domain is compensated by the front speed as a Lagrange
multiplier leads to errors of size L−2. Since computations need to resolve the exponentially small
tails in the leading edge, underflow and round-off errors put effective limits on the size L of the
computational domain in this scenario and lead to non-negligible errors for the speed [2].
On the other hand, convergence to pushed fronts is exponential both in time t when performing
direct simulations and exponential in space L when using the Newton-approach described above
[18, 35, 2].
Taken together, one would wish to compute

• pulled front speeds from linear (algebraic) information;
• pushed front speeds from nonlinear boundary value problems.

For this strategy to work reliably, one clearly needs to
• determine transitions from pulled to pushed front propagation;
• find predictions for pushed front speeds near the pulled-to-pushed transition.

The latter part is necessary since exponential convergence of pushed fronts speeds either in time t
or in domain size L is slow, with exponential rate converging to zero near the transition to pulled
front propagation.
Our results in this regard can be summarized as follows:

• we develop numerical continuation for both pushed and pulled fronts that continues past
pushed-to-pulled transitions;

• we identify a computable criterion for a pushed-to-pulled transition;
• we predict pushed speeds near the transition via leading-order corrections to linear speeds.

The main analytical result, precisely formulated in Theorems 1–2, can be informally stated as
follows.
Theorem (Pushed-to-pulled transition) The pushed-to-pulled transition is a codimension-1 bifur-
cation. For a suitable orientation of the generic parameter µ, pulled fronts with speed clin(µ) are
marginally stable for µ > 0 and unstable for µ < 0. Pushed fronts exist and are marginally stable for
µ < 0 with leading-order speed cpushed = clin(µ) + c2µ

2 for some c2 > 0. Pulled fronts are monotone
in the leading edge when stable, µ > 0, and non-monotone when unstable, µ < 0.

Numerical algorithms are a natural consequence of our analysis, in which we identify “explicit”
tail behavior of pulled fronts so that we can find pulled and pushed fronts analytically as strongly
localized corrections to this tail-behavior. In the remainder of this introduction, we describe the
general setup we use to formulate our results and formulate conditions for a pushed-to-pulled
transition and for a generic unfolding. We then state our main analytical results on existence and
marginal stability, including a brief discussion of front selection. The remainder of this paper is
occupied by proofs of these main results, their applications to numerical algorithms, and implications
for several concrete model PDEs.

2



Setup. To fix ideas, consider the semilinear parabolic-elliptic system

Mut = P(∂x)u+ f(u;µ), u ∈ Rn, (1.1)

with parameter µ ∈ R. We assume that M ∈ Rn×n is a diagonal matrix whose first k diagonal
entries are equal to 1, with all other diagonal entries equal to zero; we notably allow k = n, the
purely parabolic case but of course neeed k ≥ 1. For the differential operator, we assume the
ellipticity condition

P(∂x) =
2m∑
j=1

Pj∂
j
x, Pj ∈ Rn×n, Re (−1)mλ < 0 for all eigenvalues λ of P2m. (1.2)

Note that we choose P0 = 0, absorbing constant terms into f .
The nonlinearity is assumed to be smooth, of class C2, and allow for a trivial equilibrium, f(0; 0) = 0,
and a state u− ∈ Rn that is selected as a result of the invasion process, f(u−; 0) = 0. For simplicity,
we assume that these states are independent of the parameter µ, f(0;µ) = f(u−;µ) = 0, possibly
first changing coordinates in Rn in a µ-dependent fashion. The analysis and results presented here
will hold true for nonlinearities f = f(u, ∂xu, . . . , ∂

2m−1
x u;µ) and when allowing for µ-dependence

in P , or in cases where the order of P changes in different components, and we choose the current
setup for notational simplicity, only.

Instability in the leading edge, spreading speeds, and leading-edge profiles. We assume
that the trivial state u = 0 is unstable. We therefore assume that the linearization in the leading
edge

Mut = (P(∂x) + fu(0;µ))u,

possesses exponentially growing solutions exp(λt+ ikx)u0 for some u0 ∈ Rn, k ∈ R, Reλ > 0. In a
comoving frame, this instability may be convective in nature, that is, the solution to

Mut = (P(∂x) + cMux + fu(0;µ))u, x ∈ R, u(t = 0, x) = Iδ(x), (1.3)

with identity matrix I and Dirac-delta δ(x) may decay exponentially in any finite interval x ∈ [−L,L].
In fact, the results in [23] show that pointwise exponential decay holds for all sufficiently large
speeds c ∈ (clin,∞). At the critical speed clin, pointwise exponential decay is obstructed by the
presence of a singularity of the resolvent Green’s function on the imaginary axis. We assume here
that this singularity is located at λ = 0 and, as was shown in [23] to be generically the case, is given
by a simple pinched double root of the dispersion relation; see Hypothesis 1 for further details.
Much of the discussion until now comprises marginal stability information. The assumptions that
we need for the proof of our main bifurcation result are slightly weaker and we shall formulate those
now. We will later comment on the relation to marginal stability as discussed here.
First, consider the linearization at u = 0 in a comoving frame with speed c (1.3), take Fourier-Laplace
transform u(t, x) = exp(λt+ νx), and find the symbol

A(λ, ν, c;µ) = P(ν) + cνM + fu(0;µ) − λM. (1.4)

Associated with this linearization is the dispersion relation

dc(λ, ν;µ) = d0(λ− cν, ν;µ) = detA(λ, ν, c;µ). (1.5)
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The next hypothesis describes a generic singularity of the pointwise Green’s function at λ = 0. It
roughly states that two solutions exp(λt + νj(λ)x)uj(λ), j = 1, 2 collide at λ = 0, ν1/2(0) = ν0,
u1/2(0) = u0, with generic unfolding in λ.

Hypothesis 1 (Simple double root). We assume that two spatial roots ν of the dispersion relation
collide at λ = 0 for the critical speed c0 at µ = 0:

dc0(0, ν0; 0) = 0, ∂νdc0(0, ν0; 0) = 0, ∂ννdc0(0, ν0; 0)∂λdc0(0, ν0; 0) < 0,

for some ν0 < 0.1

We briefly note that such double roots at λ = 0 are robust and can be continued in parameters.

Lemma 1.1 (Robustness of simple double roots). There exist smooth λdr(µ, c) and νdr(µ, c),
λdr(0, c0) = 0 and νdr(0, c0) = ν0, such that

dc(λdr(µ, c), νdr(µ, c);µ) = 0, ∂νdc(λdr(µ, c), νdr(µ, c);µ) = 0,
∂ννdc(λdr(µ, c), νdr(µ, c);µ) ̸= 0, ∂λdc(λdr(µ, c), νdr(µ, c);µ) ̸= 0.

Moreoever, adjusting c as a function of the parameter µ, the double root is located at the origin.
That is, there exist smooth clin(µ) and νlin(µ) with clin(0) = c0, νlin(0) = ν0, as given in Hypothesis 4,
solving

dclin(µ)(0, νlin(µ);µ) = 0, ∂νdclin(µ)(0, νlin(µ);µ) = 0,
∂ννdclin(µ)(0, νlin(µ);µ) ̸= 0, ∂λdclin(µ)(0, νlin(µ);µ) ̸= 0.

Double roots induce Jordan block type spatial behavior, as made precise in the following corollary.

Corollary 1.2. The linearization in the leading edge

(P(∂x) + clin(µ)M∂x + fu(0;µ))u = 0

has solutions

u(x, µ) = (α(u0(µ)x+ u1(µ)) + βu0(µ))eνlin(µ)x, α, β ∈ R, (1.6)

where u0(µ), u1(µ) ∈ Rn are smooth.

Proofs will be given in Section 2.

Existence of fronts, characterization of pushed-to-pulled transition. The transition
between pushed and pulled fronts crucially relies on nonlinear contributions. Rather than making
those explicit in a specific example, we make conceptual assumptions on existence and leading-edge
asymptotics of a nonlinear front profile.

1The terminology “simple double root” is motivated by the fact that (0, ν0) is “simple” in a degree counting sense
as a solution to the double root equation d = ∂νd = 0 assuming that ∂ννd, ∂λd ̸= 0.
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Hypothesis 2 (Existence of front at a pushed-to-pulled transition). For µ = 0, there exists a front
q0(x), that is, a stationary solution in the frame moving with the speed c0 from Hypothesis 1, solving

(P(∂x) + c0M∂x)q0 + f(q0; 0) = 0,

with asymptotics

q0(x) = u0(0)eν0x + O(e(ν0−η)x), x → ∞ (1.7)

and

q0(x) = u− + O(eηx), x → −∞ (1.8)

for some η > 0, with u0 defined in Corollary 1.2.

Note that, in particular, the asymptotics in the leading edge x → ∞ do not include a linear
term x exp(ν0x) as generically expected from Corollary 1.2. The absence of this term is the key
codimension-one assumption encoding the transition. In the hypothesis, we set a non-zero coefficient
of u0(0)eν0x in (1.7) to 1, which can readily be achieved by scaling u0(0). The asymptotics (1.7) are
consistent with the existence of solutions to the linearization of the form (1.6) shown in Corollary 1.2.
Thinking of the existence problem as a shooting problem in an ODE, Hypothesis 2 corresponds to the
existence of a heteroclinic orbit between the equilibria corresponding to u− and 0. Associated with
this heteroclinic is a dimension counting question: what is the dimension of the unstable manifold
of u−, and what is the dimension of the strong stable manifold of 0 associated with decay rate
exp(ν0 + εx). Our next assumptions will clarify this dimension counting question via assumptions
on Fredholm properties of the linearization at the heteroclinic profile in suitable exponentially
weighted spaces. Those assumptions will in particular clarify that the assumption on vanishing of
the linear term x exp(ν0x) makes Hypothesis 2 a codimension-one assumption, corresponding to the
codimension-one situation of a transition between pushed and pulled front invasion.

Fredholm indices and pinching conditions. We let B0 = P(∂x) + c0M∂x + fu(q0; 0) denote
the linearization at the front described in Hypothesis 2. In order to capture solutions with precise
leading-edge asymptotics, we introduce exponentially weighted function spaces as follows.
For η± ∈ R, we let ωη−,η+ be a smooth positive weight function satisfying

ωη−,η+(x) =
{
eη−x, x ≤ −1,
eη+x, x ≥ 1.

(1.9)

We let W k,p
exp,η−,η+(R) denote the corresponding weighted Sobolev space, with norm

∥f∥
W k,p

exp,η−,η+
= ∥ωη−,η+f∥W k,p . (1.10)

When k = 0, we write W 0,p
exp,η−,η+(R) = Lp

exp,η−,η+(R) with corresponding notation for the norms.
Ellipticity (1.2) guarantees that B0 is closed with domain W 2m,p

exp,η−,η+ on Lp
exp,η−,η+(R). We denote

ω0,−ν0 =: ω0, and let L0 = ω0B0ω
−1
0 .

Hypothesis 3 (Fredholm properties). For all ε > 0 sufficiently small, we assume that B0 :
H2m

exp,0,−ν0−ε → L2
exp,0,−ν0−ε is Fredholm of index i = +1 with (minimal) one-dimensional kernel

spanned by the derivative of the front q′
0. Furthermore, we assume that B0 : H2m

exp,0,−ν0+ε →
L2

exp,0,−ν0+ε is Fredholm of index i = −1 with trivial kernel and we denote by Φ a vector spanning
the one-dimensional cokernel. We let φ = ω0,−ν0Φ denote the corresponding basis for the cokernel
of L0.
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Some comments are in order here. First, the relation between Freholm indices with weights −ν0 ± ε
relates to the fact that ν0 is double as a root of the dispersion relation, so that the stronger
exponential weight adds two boundary conditions at +∞, eliminating solutions with asymptotics
as given in Corollary 1.2. The assumption on the change of Fredholm index from +1 to −1 upon
enforcing stronger exponential decay then implies that there are no further roots dc0(0, ik; 0) = 0
on the imaginary axis. Second, rewriting the existence equation as a first-order ODE, we claim
that this hypothesis guarantees a standard transversality of intersection of unstable and strong
stable manifolds. In fact, the Fredholm index of the differential operators is given by the difference
in Morse indices at the asymptotic states in such a first-order ODE formulation; see [34] for an
account relevant to our situation. If we let iu denote the dimension of the unstable manifold of u−
and iss the dimension of the strong stable manifold at 0 comprising solutions with decay at least
exp((ν0 + ε)x), we find that the difference of associated Morse indices equals the Fredholm index,
iu − (2mn− iss) = 1. Since the kernel is one-dimensional, by assumption, we conclude that these
manifolds intersect transversely, that is, the dimension of the sum of their tangent spaces is 2mn.
Note that the Fredholm assumption implicitly implies hyperbolicity of u− and that there are no
eigenvalues (or roots of the dispersion relation dc0(0, ν)) with Re ν = ν0.
The dimension counting we presented thus far implies that fronts with exponential rate of decay
no weaker than ν0 are robust. We shall however see that for those fronts a linear growth term
x exp(ν0x) is generically present with nonzero coefficient that depends smoothly on parameters; see
Theorem 1, below.

Main results. We are now ready to state our main results. Throughout we assume Hypothesis 1
guaranteeing a simple double root with spatial decay rate ν0 at the linear spreading speed c0,
Hypothesis 2 on existence of a critical profile of a pulled front propagating with speed c0 at µ = 0,
with pure exponential asymptotics exp(ν0x) in the leading edge, and Hypothesis 3 on Fredholm
properties and minimality of spectrum at the origin. We also recall the robustness of linear spreading
speeds clin(µ) in the parameter µ from Lemma 1.1.

Theorem 1 (pulled-to-pushed unfolding — existence). For µ ∼ 0, there exist two families of fronts
qpl(x;µ) and qps(x;µ), stationary solutions to (1.1) in a frame with speeds c = cpl(µ) = clin(µ) and
c = cps(µ), respectively. Both families qpl/ps(·, µ) are continuous in µ in the local topology of C2m,
both bifurcate from q∗, that is, qpl/ps(x, 0) = q∗(x) and converge to u− in their wake

qpl/ps(x;µ) = u− + O(eδx), x → −∞, (1.11)

for some δ > 0.

In the leading edge, we have double-root asymptotics for qpl,

qpl(x;µ) = [α(µ)(u0(µ)x+ u1(µ)) + β(µ)u0(µ)]eνlin(µ)x + O(e(ν0−δ)x), x → +∞ (1.12)

where β(µ) = 1 + O(µ) and α(µ) = O(µ) are smooth, and δ > 0. We have pure exponential
asymptotics for qps,

qps(x;µ) = a(µ)ups
− (µ, σ(µ))eνps

− (µ,σ(µ))x + O(e(ν0−δ)x), x → +∞, (1.13)

for some smooth functions σ(µ) ∈ R, νps
− (µ, σ) ∈ R, ups

− (µ, σ) ∈ Rn, a(µ) = 1 + O(µ), and δ > 0.

Moreoever, if α′(0) ̸= 0, then

cps(µ) = clin(µ) + c2µ
2 + O(µ3), c2 = ∂ννdc0(0, ν0; 0)

2∂λdc0(0, ν0; 0)ν0
α′(0)2 > 0. (1.14)
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Figure 1: Center: Schematics of the pushed-to-pulled transition in the case α′(0) > 0: speeds cps/pl(µ) with
a quadratic tangency at µ = 0, pushed cps ≥ cpl. Solid lines show “selected” fronts, pushed and pulled,
dashed lines the continuation of those selected fronts in parameter space. Insets show spectra in exponentially
weighted spaces with pulled fronts marginally stable due to essential spectrum and pushed fronts marginally
stable due to point spectrum. The continuation of pulled fronts is unstable against point spectrum, the
continuation of pushed fronts is strongly stable. Left and Right: spectra of fronts as c is increased for µ < 0
(left) and µ > 0 (right). Fronts at the linear speed are marginally stable for µ > 0 with marginally stable
essential spectrum and fronts at the pushed speed are marginally stable for µ < 0 with marginally stable
point spectrum.

As stated, the theorem continues the front q0 preserving either the fact that the leading edge has
double root asymptotics, or the fact that the front itself has pure exponential asymptotics. The
significance of these two families becomes apparent when discussing selection of fronts. In fact, the
families qpl and qps should be thought of as the smooth extension of families of pulled and pushed
fronts, respectively. The terminology of pulled and pushed front refers to their selection property,
that is, one requires that open classes of initial data that vanish in x > 0, say, converge to the fronts
in a suitable topology. To clarify this interpretation, we inspect stability properties of the fronts
identified in Theorem 1.
Consider therefore the linearization about a front q∗,

B∗ = P(∂x) + cM∂x + fu(q∗(·;µ);µ) (1.15)

We write Bpl/ps(µ) when q∗ = qpl/ps and c = cpl/ps from Theorem 1. Recall the decay rate νdr(µ; c)
associated with the pinched double root λdr(µ; c) and define

Lpl/ps(µ) = ω0,−νdr(µ;cpl/ps(µ))Bpl/ps(µ)ω0,−νdr(µ;cpl/ps)) (1.16)

the linearization conjugated with the critical exponential weight, in which the essential spectrum is
pushed as far left as possible.
We focus on the spectrum Σpl/ps(µ) of Lpl/ps(µ) in a small ball centered at the origin |λ| ≤ δ. We
distinguish between point spectrum Σpt

pl/ps(µ), where Lpl/ps(µ) − λM is Fredholm index 0 but not
invertible, and the essential spectrum Σess

pl/ps(µ), where Lpl/ps(µ) − λM is not Fredholm of index 0.

Theorem 2 (pulled-to-pushed unfolding — stability). Consider the spectra Σpl/ps(µ) of Lpl/ps(µ)
in a δ-neighborhood of the origin. Recall the leading-order linear term α(µ) in the leading edge of
qpl and assume α′(0) ̸= 0. Then, for δ > 0 and |µ| sufficiently small, we have

Re Σess
pl (µ) ≤ 0, 0 ∈ Σess

pl (µ), and Re Σess
ps (µ) < 0 for |µ| ≠ 0.

Moreover,

• for α′(0)µ > 0, we have Σpt
pl (µ) = ∅, Σpt

ps(µ) = ∅;
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• for α′(0)µ < 0, we have Σpt
pl (µ) ∋ λ(µ) > 0, Σpt

ps(µ) = {0}.

In particular, fronts qps are marginally stable precisely when α′(0)µ < 0 and fronts qpl are marginally
stable precisely when α′(0)µ > 0; fronts qpl are unstable when the leading edge behavior is non-
monotone.

Remark 1.3. The fronts qps possess a resonance at λ = 0 when α′(0)µ > 0, that is, a pole of the
pointwise resolvent when considered on a Riemann surface with branch cut at the double root. A
characterization of the significance of fronts with such a resonance at the origin does not appear to
be known.

The marginal stability conjecture, often loosely formulated, states that marginal stability in the
leading edge implies selection of fronts, that is those fronts attract open sets of initial conditions
including functions with support in {x < 0}. Assuming that the marginal stability conjecture holds
and absence of spectrum in {Reλ ≥ 0, |λ| > δ}, we can therefore predict that qpl is selected when
α′(0)µ > 0 and qps is selected when α′(0)µ < 0. We summarize this conclusion in the following
“result”.
Result — pushed-to-pulled transition. Assume Hypotheses 1–3 and in addition absence of
spectrum of Lpl/ps(0) in {λ ≥ 0} \ {0}. Assume in addition that the marginal stability conjecture
holds. Then we have propagation at the linear spreading speed for monotone tails, α′(0)µ > 0, with
“selection” of the pulled front qpl(µ), and selection of the pushed front qps(µ) with speed cps(µ) > clin(µ)
for α′(0)µ < 0.

In the case of pushed fronts, the marginal stability conjecture generally can be established with
standard methods. The linearization possesses a simple eigenvalue at the origin associated with
translations in a weighted space that allows for perturbations that cut off the front tail. For pulled
fronts, the marginal stability conjecture was known in systems with comparison principles starting
with [25] and only recently established in a conceptual framework, based only on linear information
as provided here, albeit only for scalar higher-order parabolic equations [4].

2 Preliminaries

2.1 Double root criteria and robustness of double roots

We start by providing a reformulation of Hypothesis 1 without relying on determinants, preparing
also for the proof of robustness, Lemma 1.1, and tail expansions, Corollary 1.2. Recall the definition
of the family of matrices associated with the leading edge,

A(λ, ν, c;µ) = P(ν) + cνM + fu(0;µ) − λM.

Hypothesis 4 (Simple double root). There exist ν0 < 0, c0 > 0, and u0
0 and u0

1 ∈ Rn such that

A(0, ν0, c0; 0)u0
0 = 0, (2.1)

∂νA(0, ν0, c0; 0)u0
0 +A(0, ν0, c0; 0)u0

1 = 0. (2.2)

We let

A00 = A(0, ν0, c0; 0), A01 = ∂νA(0, ν0, c0; 0), A10 = ∂λA(0, ν0, c0; 0), A02 = 1
2∂ννA(0, ν0, c0; 0).
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We then assume that kerA00 = span(u0
0), we let ker(A00)T = span(ead), and we assume that

⟨A10u0
0, ead⟩⟨A02u0

0 +A01u0
1, ead⟩ < 0. (2.3)

In particular, A10u0
0 = −Mu0

0 and A02u0
0 + A01u0

1 are not in the range of A00 since both the
projections in (2.3) are nonzero.

Lemma 2.1. Hypothesis 4 and Hypothesis 1 are equivalent.

Proof. Both formulations express algebraic multiplicities of the eigenvalue zero when A is considered
as a matrix pencil in λ with ν = 0 or a matrix pencil in ν with λ = 0. Hypothesis 1 expresses
these multiplicities as orders of the roots of the determinant and Hypothesis 4 as lengths of Jordan
chains. Both characterizations agree; see for instance [17]. It remains to show that ∂λd∂ννd < 0
is equivalent to (2.3). This in turn follows from a direct computation using Lyapunov-Schmidt
reduction to find all values of λ, ν where A has a kernel. The determinant criterion gives this via
the expansion ∂λd · λ+ 1

2∂ννd · ν2 + O(λ2, λ(ν − ν0), (ν − ν0)3) = 0. Directly from the matrix kernel,
we find ⟨A10u0

0, ead⟩λ+ 1
2⟨A02u0

0 +A01u0
1, ead⟩ν2 + O(λ2, λ(ν − ν0), (ν − ν0)3) = 0, establishing our

claim.

Remark 2.2. The sign in (2.3) implies an effective positive diffusivity, when interpreting the
expansion λ − (ν − ν0)2 of the dispersion relation as stemming from a diffusion equation with
exponential weight ν0. There appear to be no known examples where the most unstable double root
has a negative effective diffusivity in this sense. Positive effective diffusivity also implies stability of
the absolute spectrum, which governs stability in large bounded domains [31], in a neighborhood of
the double root. We caution however that, conversely, stability of double roots and positive effective
diffusivity does not imply stability of absolute spectra and refer to [15] for analysis and a discussion
of invasion phenomena in this context.

We next establish robustness of double roots, using the formulation from Hypothesis 4. As an
additional benefit, using this approach also provides us with a continuation of the eigenvectors u0
and u1.

Proof of Lemma 1.1. We only prove the second claim, pinning the double root at the origin for
a suitable speed clin. The first claim is easier to establish, solving for instance dc(λ, ν;µ) =
∂νdc(λ, ν;µ) = 0 with the implicit function theorem for (λ, ν).
Define F : Rn × Rn × R2 × R → R2n+2 by

F (u0, u1, c, ν;µ) =


A(0, ν, c;µ)u0

∂νA(0, ν, c;µ)u0 +A(0, ν, c;µ)u1
⟨u0 − u0

0, u
0
0⟩

⟨u1 − u0
1, u

0
0⟩

 (2.4)

Note that by Hypothesis 4, F (u0
0, u

0
1, c0, ν0; 0) = 0. Linearizing about this solution, we find

D(u0,u1,c,ν)F (u0
0, u

0
1, c0, ν0; 0) =


A00 0 ∂cA(⋆)u0

0 A01u0
0

A01 A00 ∂c∂νA(⋆)u0
0 + ∂cA(⋆)u0

1 2A02u0
0 +A01u0

1
⟨·, u0

0⟩ 0 0 0
0 ⟨·, u0

0⟩ 0 0

 ,
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where (⋆) = (u0
0, u

0
1, c0, ν0; 0). Note that ∂cA(⋆) = ν0M , ∂c∂νA(⋆) = M and by Hypothesis 4

A01u0
0 = −A00u0

1, so that this expression simplifies to

D(u0,u1,c,ν)F (u0
0, u

0
1, c0, ν0; 0) =


A00 0 ν0Mu0

0 −A00u0
1

A01 A00 Mu0
0 + ν0Mu0

1 2A02u0
0 +A01u0

1
⟨·, u0

0⟩ 0 0 0
0 ⟨·, u0

0⟩ 0 0

 .
Assume (w0, w1, c̃, ν̃) ∈ kerD(u0,u1,c,ν)F (u0

0, u
0
1, c0, ν0; 0), so that (w0, w1, c̃, ν̃) satisfy the following

system

A00w0 + c̃ν0Mu0
0 − ν̃A00u0

1 = 0
A01w0 +A00w1 + c̃(Mu0

0 + ν0Mu0
1) + ν̃(2A02u0

0 +A01u0
1) = 0,

⟨w0, u
0
0⟩ = 0,

⟨w1, u
0
0⟩ = 0.

In particular, from the first equation we have A00(w0 − ν̃u0
1) = −c̃ν0Mu0

0. However, by Hypothesis 4,
Mu0

0 /∈ RgA00, so we must have c̃ = 0, from which we again use Hypothesis 4 to conclude that
w0 − ν̃u0

1 = αu0
0 for some α ∈ R. We may then rewrite the second equation as

A01(αu0
0) +A00w1 = −2ν̃(A02u0

0 +A01u0
1).

By Hypothesis 4, we have A01u0
0 = −A00u0

1, and hence

A00(w1 − αu0
1) = −2ν̃(A02u0

0 +A01u0
1).

Since by Hypothesis 4, the right hand side is not in the range of A00, we conclude that ν̃ = 0, from
which it follows that w1 − αu0

1 = βu0
0 for some β ∈ R, and w0 = αu0

0. However, since ⟨w0, u
0
0⟩ = 0,

we conclude α = 0, and then we have w1 = βu0
0, with ⟨w1, u

0
0⟩ = 0, and so β = 0 as well. Hence the

kernel of the linearization is trivial, and the result follows from the implicit function theorem.

2.2 Projections of tail corrections

Recall the definition of the linearization L0 after conjugation with exponential weights, characterized
in Hypothesis 3 and the definition of φ, there, as a basis of the cokernel. Let χ+ be a smooth,
positive cutoff function satisfying

χ+(x) =
{

1, x ≥ 3,
0, x ≤ 2.

Lemma 2.3 (Projections). We have

⟨L0(u0
0χ+), φ⟩ = 0, (2.5)

while

⟨L0[(u0
0x+ u0

1)χ+], φ⟩ ≠ 0. (2.6)

10



Proof. First we prove (2.5). We start by rewriting the equation L0u = 0 with the far-field/core
ansatz u = w + βu0

0χ+, where w ∈ L2
exp,0,η for η small. We then let P be the orthogonal projection

onto the range of L0 in L2
exp,0,η, and decompose the resulting equation for (w, β) as{

PL0(w + βu0
0χ+) = 0,

⟨L0(w + βu0
0χ+), φ⟩ = 0.

(2.7)

Rewriting the first equation as PL0w = −βPL0(u0
0χ+), and exploiting that −βPL0(u0

0χ+) ∈
L2

exp,0,η(R) and that PL0 : H2m
exp,0,η(R) ⊂ L2

exp,0,η → L2
exp,0,η is invertible by construction, we may

solve the first equation for w = w(β). The full system therefore has a solution (w(β), β) if and
only if ⟨L0(w + βu0

0χ+), φ⟩ = 0. Since w is exponentially localized and φ is in the kernel of L∗
0,

we have ⟨L0w,φ⟩ = ⟨w,L∗
0φ⟩ = 0. Hence the system (2.7) has a solution (w, β) if and only if

β⟨L0(u0
0χ+), φ⟩ = 0. However, Hypothesis 2 gives us a solution to this equation: by translational

invariance of the original equation, we have L0(ω0q
′
0) = 0. Defining β = ν0 and w = ω0q

′
0 − ν0u

0
0χ+

then gives a solution to (2.7). Since β = ν0 ̸= 0, we conclude that ⟨L(u0
0χ+), φ⟩ = 0, as desired.

To prove (2.6), we modify the far-field core ansatz to incorporate the linearly growing solution
captured in Corollary 1.2, writing

L0[w + α(u0
0x+ u0

1)χ+] = 0. (2.8)

Corollary 1.2 guarantees that the result of the left hand side is in L2
exp,0,η, so we again decompose

this equation as {
PL0[w + α(u0

0x+ u0
1)χ+] = 0,

⟨L0[w + α(u0
0x+ u0

1)χ+], φ⟩ = 0.
(2.9)

At α = 0, the first equation has the trivial solution w = 0. The linearization in w at this solution is
PL0, which is invertible on L2

exp,0,η by construction, so by the implicit function theorem we find
a solution w(α) for α small. Linearity in α and w together with uniqueness of the solution found
from the implicit function theorem implies that we may write this solution as w(α) = αw̃ for some
w̃ ∈ L2

exp,0,η. We may then insert this into the second equation, and find that the system (2.9) has
a solution if and only if

α⟨L0[w̃ + (u0
0x+ u0

1)χ+], φ⟩ = 0.

Again, since w̃ ∈ L2
exp,0,η, we have ⟨L0w̃, φ⟩ = ⟨w̃,L∗

0φ⟩ = 0. Hence (2.9) has a solution if and only
if α⟨L0[(u0

0x+ u0
1)χ+], φ⟩ = 0.

We claim that (2.9) has no nontrivial solutions by Hypotheses 2 and 3. Any nontrivial solution would
give rise to a solution to (2.8) which is either linearly growing at +∞ (if α ̸= 0) or exponentially
localized (if α = 0). Such a solution would be a solution to L0u = 0, which is in L2

exp,0,−η, which is
linearly independent from ω0q

′
∗, which is excluded by Hypothesis 3. Hence (2.9) has no nontrivial

solutions. On the other hand, if we had ⟨L0[(u0
0x + u0

1)χ+], φ⟩ = 0, we would obtain a family of
solutions of (2.9) for α ̸= 0, small. Hence we must have ⟨L0[(u0

0x+ u0
1)χ+], φ⟩ ≠ 0, as desired.

2.3 Expansions of spatial eigenvalues and eigenspaces

Fixing λ = 0, we have an eigenvalue of multiplicity 2 in ν at the origin and an associated Jordan
block. Varying λ, this double eigenvalue splits and eigenvalues and eigenspaces need to be carefully
expanded after passing to a Riemann surface.
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Lemma 2.4 (Saddle node of eigenspaces). Fix µ small, and let γ =
√
λ with branch cut along the neg-

ative real axis. The equation A(λ, ν, clin(µ);µ)u = 0 has precisely two solutions (νpl
± (µ, γ), u∞

± (µ, γ))
(up to a constant multiple of the u component) for ν close to ν0 and λ close to zero, with expansions

νpl
± (µ, γ) = νlin(µ) ±

√
−d10d

−1
02 γ + O(γ2), (2.10)

u∞
± (µ, γ) = u0(µ) ±

√
−d10d

−1
02 (⟨u0, u1⟩u0 + u1) γ + O(γ2), (2.11)

with remainder terms uniformly small in µ, and d10, d02 as in (2.20).

Proof. We let Aµ(λ, ν) = A(λ, ν, clin(µ);µ), and define

F (u, ν;λ) =
(
Aµ(λ, νlin(µ) + ν)(u0(µ) + u)

|u0 + u|2 − 1

)
. (2.12)

We look for solutions to F (u, ν;λ) = 0. The second equation is a normalization condition: since
the first equation is linear in u0(µ) + u, we need to adjoin with a condition that fixes the constant
multiple. From now on, we suppress the dependence on µ. By construction, F (0, 0; 0) = 0, and we
compute the linearization

D(u,ν)F (0, 0; 0) =
(

A00
µ A01

µ u0
2⟨·, u0⟩ 0

)
, (2.13)

where A00
µ = Aµ(0, νlin(µ)) and A01

µ = ∂νAµ(0, νlin(µ)). From a short computation, we see that
D(u,ν)F (0, 0; 0) has a one dimensional kernel spanned by

w0 = (⟨u1, u0⟩u0 + u1, 1). (2.14)

We therefore perform a Lyapunov-Schmidt reduction. Let Q denote the orthogonal projection in
Cn+1 onto the range of D(u,ν)F (0, 0; 0). We let w = (u, ν), and split the solution as w = wc + wh =
(uc + uh, νc + νh), with wc ∈ ker(D(u,ν)F (0, 0; 0)) and wh ∈ (ker(D(u,ν)F (0, 0; 0)))⊥. Our system
then becomes {

QF (uc + uh, νc + νh;λ) = 0
(I −Q)F (uc + uh, νc + νh;λ) = 0.

(2.15)

The linearization of the first equation with respect to wc is QD(u,ν)F (0, 0; 0)
∣∣
(ker(D(u,ν)F (0,0;0)))⊥ ,

which is invertible by construction. We therefore solve the first equation with the implicit function
theorem for wh(wc;λ) = O(|λ| + |wc|2 + |λ||wc|).
To compute the reduced second equation, we find I − Q explicitly by solving for the cokernel of
D(u,ν)F (0, 0; 0). Indeed, we have

D(u,ν)F (0, 0; 0)∗ =
(

(A00
µ )T 2u0

⟨·, A01
µ u0⟩ 0.

)
(2.16)

The kernel of (A00
µ )T is one dimensional, spanned by a vector ead(µ). Notice that by Lemma 1.1 and

the formulation of simple pinched double roots in Hypothesis 4, we have ⟨ead, A
01
µ u0⟩+⟨ead, A

00
µ u0⟩ =

0, hence

⟨ead, A
01
µ u0⟩ = −⟨ead, A

00
µ u0⟩ = −⟨(A00

µ )T ead, u0⟩ = 0, (2.17)
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and therefore (ead, 0) spans the kernel of D(u,ν)F (0, 0; 0)∗.
Choosing coordinates on the kernel, we let (uc, νc) = α(wu

0 , w
ν
0). From a short computation, we find

(I −Q)F (αwu
0 + uh(αw0;λ), αwν

0 + νh(αw0;λ);λ)

= −λ⟨Mu0, ead⟩ +
(〈
A01

µ (⟨u1, u0⟩u0 + u1) +A02
µ u2, ead

〉)
α2 + O(|λ|2, |α|3, |α||λ|), (2.18)

where A02
µ = ∂ννAµ(0, νlin(µ)). Note that, as above, ⟨A01

µ u0, ead⟩ = 0. Hence we obtain the reduced
equation

0 = d10λ+ d02α
2 + O(|λ|2, |α||λ|, |α|3) (2.19)

where

d02 = ⟨A01
µ u1 +A02

µ u2, ead⟩, d10 = ⟨−Mu0, ead⟩. (2.20)

Solving with the Newton polygon, we find unique solutions

α(γ) = ±
√

−d10d
−1
02 γ + O(γ2), (2.21)

for λ = γ2, with Reλ to the right of the critical dispersion curve. Returning to νc = αwc
0, we find

ν±
c (γ) = ±

√
−d10d

−1
02 γ + O(γ2). (2.22)

Similarly,

u±
c = αwu

0 = ±
√

−d10d
−1
02 (⟨u0, u1⟩u0 + u1) γ + O(γ2). (2.23)

Since uh and νh are higher order, this proves the desired expansions, with u∞
± = u0 + u±

c and
νpl

± = νlin + νc
±.

2.4 Expansions of pulled fronts in the leading edge

We show how the fact that the symbol A has a double root in ν translates into asymptotics of pulled
fronts, Corollary 1.2.

Proof of Corollary 1.2. We suppress the arguments λ, c, µ in A and write A(ν0 + ν) = A0 +A1ν +
O(ν2). We need to show that

A(∂x)u0
0e

ν0x = 0, A(∂x)(u0
0x+ u0

1)eν0x = 0.

This turns out being equivalent to

A0u0
0 = 0, (A0 +A1∂x)(u0

0x+ u0
1) = 0,

which is precisely encoded in (2.1) and (2.2).
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3 Pulled unfolding

We prove the claims on qpl from Theorem 1. We start by inserting the far-field core ansatz

u(x) = u−χ−(x) + w(x) + χ+[α(u0(µ)x+ u1(µ)) + βu0(µ)]eνlin(µ)x (3.1)

into the traveling wave equation

(P(∂x) + clin(µ)M∂x)u+ f(u;µ) = 0, (3.2)

obtaining an equation

F pl(w;α, β, µ) := (P(∂x) + clin(µ)M∂x)(u−χ− + w + χ+ψ) + f(u−χ− + w + χ+ψ;µ) = 0, (3.3)

where

ψ(x;α, β, µ) = [α(u0(µ)x+ u1(µ)) + βu0(µ)]eνlin(µ)x. (3.4)

Fix ε > 0 small and let η0 = −ν0 + ε. We require w to be faster decaying than eν0x, so we consider
F pl as a function F pl : H2m

exp,0,η0 × R2 × (−µ0, µ0) → L2
exp,0,η0 for some µ0 small.

Lemma 3.1. The function F pl : H2m
exp,0,η0 × R2 × (−µ0, µ0) → L2

exp,0,η0 is well defined and smooth
in all variables.

Proof. The fact that F pl maps into L2
exp,0,η0(R) and hence is well defined follows from the fact that

f(u−;µ) = 0, and Corollary 1.2, which guarantee that the far-field terms in the ansatz satisfy the
traveling wave equation asymptotically. Smoothness follows from the fact that H1

exp,0,η0(R) is a
Banach algebra.

Note that at µ = 0, we have F (w0; 0, 1, 0) = 0, where

w0(x) = q0(x) − u−χ−(x) − ψ(x; 0, 1, 0)χ+(x). (3.5)

By Hypothesis 3, the linearization DwF (w0; 0, 1, 0) = L0 is Fredholm with index -1. By the Fredholm
bordering lemma, the joint linearization D(w,α,β)F

pl(w0; 0, 1, 0) is Fredholm with index 1, so we
augment this system with a phase condition, defining

Gpl(w;α, β, µ) =
(

F pl(w;α, β, µ)
⟨w, e0⟩ − ⟨w0, e0⟩

)
(3.6)

where e0 ∈ L2
exp,0,η0(R) is a fixed localized function chosen such that

⟨q′
0 − ν0u

0
0χ+e

ν0·, e0⟩ ≠ 0. (3.7)

The Fredholm bordering lemma implies that D(w,α,β)G
pl(w0; 0, 1, 0) is Fredholm with index zero,

and from a short computation, we find

D(w,α,β)G(w0; 0, 1, 0) =
(

B0 B0[(u0
0x+ u0

1)χ+e
ν0x] B0(u0

0χ+e
ν0x)

⟨·, e0⟩ 0 0

)
.
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Proposition 3.2. The linear operator

D(w,α,β)G
pl(w0, 0, 1, 0) : H2m

exp,0,η0 × R2 × (−µ0, µ0) → L2
exp,0,η0(R) × R

is invertible.

Proof. Since D(w,α,β)G
pl(w0, 0, 1, 0) is Fredholm index zero, it suffices to prove that the kernel of

this operator is trivial. Suppose

(
B0 B0[(u0

0x+ u0
1)χ+e

ν0x] B0(u0
0χ+e

ν0x)
⟨·, e0⟩ 0 0

)va
b


for some (v, a, b)T ∈ H2m

exp,0,η0 × R2. Then, in particular,

B0[v + a(u0
0x+ u0

1)eν0x + bu0e
ν0x] = 0.

By Hypothesis 2 and translation invariance, we have that B0q
′
0 = 0. By the assumption on minimality

of the kernel of B0 in Hypothesis 3, we conclude that this is the unique solution up to a constant
multiple which is localized on the left and decays faster than e(ν0+ε)x as x → ∞. Hence we must
have a = 0, and

v(x) + bu0
0χ+(x)eν0x = c1q

′
0(x) ∼ c1ν0u

0
0e

ν0x

for some constant c1 ∈ R. Since v decays faster than eν0x, we must have b = c1ν0, and so

v(x) = c1(q′
0(x) − ν0u

0
0χ+e

ν0x).

The second equation then implies

c1⟨q′
0 − ν0u

0
0χ+e

ν0·, e0⟩ = 0.

With the choice of e0 in (3.7), we conclude that c1 = 0, and hence the kernel of D(w,α,β)G
pl(w0; 0, 1, 0)

is trivial, as desired.

Proof of Theorem 1 — the case qpl. Note that G(w0; 0, 1, 0) = 0, where w0 is given by (3.5), and
by the preceding proposition D(w,a,b)G

pl(w0; 0, 1, 0) is invertible. By the implicit function theorem,
we find (w(µ);α(µ), β(µ)) so that Gpl(w(µ);α(µ), β(µ), µ) = 0 for µ small. The ansatz

qpl(x;µ) = u−χ−(x) + w(x;µ) + χ+(x)[α(µ)(u0(µ)x+ u1(µ)) + β(µ)u0(µ)]eν(µ)x (3.8)

then gives the desired pulled front solutions.

4 Pushed unfolding

We now prove the claims on qps from Theorem 1.
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4.1 Existence of qps

Lemma 4.1. The equation A(0, ν, clin + σ2;µ)u = 0 has two solutions (νps
± (µ, σ), ups

± (µ, σ)) for σ
small, ν ≈ νlin(µ), with expansions

νps
± (µ, σ) = νlin(µ) ±

√
d10(µ)d02(µ)−1νlin(µ)σ + O(σ2), (4.1)

ups
± (µ, σ) = u0

0 ±
√
d10(µ)d02(µ)−1νlin(µ)(⟨u0, u1⟩u0 + u1)σ + O(σ2). (4.2)

Proof. Note that A(0, ν, clin + σ2;µ) = A(−σ2ν, ν, clin(µ);µ). The result then follows by applying
Lemma 2.4.

Corollary 4.2. The linearization in the leading edge

(P(∂x) + (clin(µ) + σ2)M∂x + fu(0;µ))u = 0 (4.3)

has a solution

u(x;µ) = ups
− (µ, σ)eνps

− (µ,σ)x.

To construct the bifurcating pushed front solutions, we insert the far-field core ansatz

u(x) = u−χ−(x) + w(x) + aups
− (µ, σ)χ+(x)eνps

− (µ,σ)x (4.4)

into the traveling wave equation to obtain

F ps(w; a, σ, µ) := (P(∂x) + (clin(µ) + σ2)M∂x)(u−χ− + w + aups
− (µ, σ)χ+e

νps
− (µ,σ)·)

+ f(u−χ− + w + αups
− (µ, σ)χ+e

νps
− (µ,σ)·;µ) = 0.

It follows from Corollary 4.2 that F ps : H2m
exp,0,η0 ×R2 × (−µ0, µ0) → L2

exp,0,η0(R) is well defined and
smooth for µ0 sufficiently small. By Hypothesis 2, at µ = 0 we have a solution F (w0; 1, 0, 0) = 0,
where

w0(x) = q0(x) − u−χ−(x) − χ+(x)u0
0e

ν0x.

As in the pulled case, Hypothesis 3 together with the Fredholm bordering lemma implies that
D(w,a,σ)F

ps(w0; 1, 0, 0) is Fredholm with index 1. We again augment with a phase condition, defining

Gps(w; a, σ, µ) =
(

F ps(w; a, σ, µ)
⟨w, e0⟩ − ⟨w0, e0⟩,

)
(4.5)

where e0 is chosen as in Section 3. From a short calculation, we find

D(w,a,σ)G
ps(w0; 1, 0, 0) =

(
B0 B0(u0

0χ+e
ν0x) B0[(∂σu

ps
− (0, 0) + x∂σν

ps
− (0, 0)x)χ+e

ν0x]
⟨·, e0⟩ 0 0

)
.

Proposition 4.3. The linear operator

D(w,a,σ)G
ps(w0, 1, 0, 0) : H2m

exp,0,η0 × R2 × (−µ0, µ0) → L2
exp,0,η0(R) × R

is invertible.
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Proof. The Fredholm properties of F ps together with the Fredholm bordering lemma imply that
this linearization is Fredholm with index zero, so as in the pulled case we only have to prove that
the kernel is trivial. Assume there exists (v, a, b)T ∈ H2m

exp,0,η0 × R2 such that

(
B0 B0(u0

0χ+e
ν0x) B0[(∂σu

ps
− (0, 0) + x∂σν

ps
− (0, 0)u0

0x)χ+e
ν0x]

⟨·, e0⟩ 0 0

)va
b

 = 0.

Then in particular

B0
[
v + au0

0χ+e
ν0x + b(∂σu

ps
− (0, 0) + x∂σν

ps
− (0, 0)u0

0x)χ+e
ν0x
]

= 0.

Since again q′
0(x) ∼ ν0u

0
0e

ν0x is the unique solution to B0u = 0 which decays faster than e(ν0+ε)x

as x → ∞ and is localized on the left, and ∂σν
ps
− (0, 0) ̸= 0 by (4.1), we conclude that b = 0, that

a = c1ν0 for some constant c1, and

v(x) = c1(q′
0(x) − ν0χ+e

ν0x).

The equation ⟨v, e0⟩ = 0 then implies c1⟨(q′
0(x) − ν0χ+e

ν0x, e0⟩ = 0, but choosing e0 as in Section 3,
this implies c1 = 0, and so the kernel is trivial, as desired.

Proof of Theorem 1 — existence of qps. We have Gps(w0; 1, 0, 0) = 0, with D(w,a,σ)G
ps(w0; 1, 0, 0)

invertible. The existence of qps in Theorem 1 then follows directly from the implicit function theorem,
with

qps(x;µ) = u−χ−(x) + w(x;µ) + a(µ)ups
− (µ, σ(µ))χ+(x)eνps

− (µ,σ(µ))x,

where Gps(w(·;µ); a(µ), σ(µ), µ) = 0 by the implicit function theorem.

4.2 Expansion of cps(µ)

Having established the existence of qpl and qps, to complete the proof of Theorem 1 it only remains
to establish the expansion (1.14) for cps(µ).

Proposition 4.4. Assume that the family of pulled fronts from Theorem 1 satisfies α′(0) ̸= 0. Then

σ′(0) = − 1√
d10d

−1
02 ν0

α′(0) ̸= 0. (4.6)

Proof. Starting with the solution Gps(w(µ); a(µ), σ(µ), µ) = 0 constructed above, we compute

∂µF
ps(w0; 1, 0, 0) = c′

lin(0)M∂x(u−χ− + w0 + u0
0χ+e

ν0x) +B0(∂µw(0) + a′(0)u0
0χ+e

νps(0,0)·

+ ∂µu
ps
− (0, 0)χ+e

ν0· + ∂µν
ps
− (0, 0)u0

0xe
ν0·). (4.7)

Projecting onto the cokernel, we find

0 = ⟨∂µF
ps(w0; 1, 0, 0), φ⟩ = c′

lin(0)⟨M∂x(u−χ− + w0 + u0
0χ+e

ν0x), φ⟩ + ⟨B0(∂µw(0)), φ⟩
+ a′(0)⟨B0(u0

0χ+e
ν0·), φ⟩ + ⟨B0[(∂µu

ps
− (0, σ(0)) + ∂µν

ps
− (0, σ(0))u0

0x)χ+e
ν0·], φ⟩ (4.8)
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Note that ⟨B0(∂µw(0)), φ⟩ = ⟨B0(u0
0χ+e

ν0·), φ⟩ = 0 by Lemma 2.3. Using Lemma 4.1 to compute
∂µu

ps
− (µ, σ(µ))|µ=0 and ∂µν

ps
− (µ, σ(µ))|µ=0, we simplify to

0 = c′
lin(0)⟨M∂x(u−χ− + w0 + u0

0χ+e
ν0x), φ⟩

+ ⟨B0[(u′
0(0) −

√
d10d

−1
02 ν0(⟨u0

0, u
0
1⟩u0

0 + u0
1)σ′(0) + ν ′

∗(0)u0
0x−

√
d10d

−1
02 ν0σ

′(0)u0
0x)χ+e

ν0·, φ⟩.
(4.9)

Noting again that ⟨B0(u0
0χ+e

ν0·), φ⟩ = 0, we obtain

σ′(0) = c′
lin(0)⟨M∂x(u−χ− + w0 + u0

0χ+e
ν0x), φ⟩ + ⟨B0(u′

0(0)χ+e
ν0·), φ⟩ + ν ′

∗(0)⟨B0(u0
0x), φ⟩√

d10d
−1
02 ν0⟨B0[(u0

0x+ u0
1)χ+eν0·], φ⟩

.

(4.10)

To complete the proof, we compute α′(0) from the analysis of Section 3 and compare the two
expressions. We recall the definition from Section 3

Gpl(w;α, β, µ) =
(

F pl(w;α, β, µ)
⟨w, e0⟩ − ⟨w0, e0⟩,

)
(4.11)

where

F pl(w;α, β, µ) = (P(∂x) + clin(µ)M∂x)(u−χ− + w + χ+ψ) + f(u−χ− + w + χ+ψ;µ) = 0, (4.12)

with ψ given by (3.4). From Section 3, we have a solution F pl(w(µ);α(µ), β(µ), µ) = 0 for µ small.
We compute

∂µF
pl(w(µ);α(µ), β(µ), µ)|µ=0 = c′

lin(0)M∂x(u−χ− + w0 + χ+u
0
0e

ν0·)
+B0(∂µw(0) + χ+∂µψ(·;α(µ), β(µ), µ)|µ=0). (4.13)

We compute from (3.4)

∂µψ(x;α(µ), β(µ), µ)|µ=0 = [α′(0)(u0
0x+ u0

1) + β′(0)u0
0 + u′

0(0)]eν0x + u0
0ν

′
∗(0)xeν0x (4.14)

Projecting onto the span of φ and using that ⟨B0(∂µw(0)), φ⟩ = ⟨B0(u0
0χ+e

ν0·), φ⟩ = 0, we obtain

0 = c′
lin(0)⟨M∂x(u−χ− + w0 + χ+u

0
0e

ν0·), φ⟩ + α′(0)⟨B0[(u0
0x+ u0

1)χ+e
ν0·], φ⟩

+ ⟨B0(u′
0(0)χ+e

ν0·), φ⟩ + ν ′
∗(0)⟨B0(u0

0xχ+e
ν0·), φ⟩. (4.15)

Solving for α′(0), we obtain

α′(0) = −c′
lin(0)⟨M∂x(u−χ− + w0 + χ+u

0
0e

ν0·) + ⟨B0(u′
0(0)χ+e

ν0·), φ⟩ + ν ′
∗(0)⟨B0(u0

0xχ+e
ν0·), φ⟩

⟨B0[(u0
0x+ u0

1)χ+eν0·], φ⟩
(4.16)

= −
√
d10d

−1
02 ν0σ

′(0). (4.17)

Since −
√
d10d

−1
02 ν0 < 0, this completes the proof of the proposition.

Proof of Theorem 1 — conclusion. By Proposition 4.4, the pushed speed is given by

cps(µ) = clin(µ) + σ(µ)2 = clin(µ) + σ′(0)2µ2 + O(µ3) (4.18)

= clin(µ) + α′(0)2

d10d
−1
02 ν0

µ2 + O(µ3), (4.19)

as desired.
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5 Stability criteria

5.1 Spectral stability of pulled fronts

We prove the claims on the linearization Lpl in Theorem 2. The claims on the essential spectrum
follow immediately from the dispersion relation, noting that the Fredholm borders are given through
roots of dc(λ, ik) = 0. In order to trace point spectrum we prepare with the following observation.

Corollary 5.1. The linearization in the leading edge

(P(∂x) + clin(µ)M∂x + fu(0;µ) −Mλ)u = 0 (5.1)

has solutions

u(x;µ, γ) = u±
pl(µ, γ)eνpl

± (µ,γ)x (5.2)

for some vectors u±
pl(µ, γ) ∈ Cn for µ and γ sufficiently small. Furthermore, u±

pl(0, 0) = u0
0, and

∂γu
−
pl(0, 0) = ∂γν

pl
− (0, 0)(⟨u0

0, u
0
1⟩u0

0 + u0
1).

Proof. This follows directly from Lemma 2.4.

Let

Bpl(µ) = P(∂x) + clin(µ)M∂x + fu(qpl(·;µ);µ) (5.3)

denote the linearization about a pulled front. Note that for γ small with Re γ > 0, we have
Re νpl

− (ν, γ) < Re νlin(µ). To capture eigenfunctions with the appropriate localization, we therefore
insert the ansatz

u(x) = w(x) + βu−
pl(µ, γ)χ+(x)eνpl

− (µ,γ)x (5.4)

into the eigenvalue equation (Bpl(µ) − γ2M)u = 0. Letting P denote the orthogonal projection onto
the range of Bpl(0) = B0 as in Section 2, we then decompose the resulting equation as

P (Bpl(µ) − γ2M)
(
w + βu−

pl(µ, γ)χ+e
νpl

− (µ,γ)·
)

= 0,〈
(Bpl(µ) − γ2M)

(
w + βu−

pl(µ, γ)χ+e
νpl

− (µ,γ)x
)
, φ

〉
= 0.

(5.5)

The following lemma states that eigenvalues of Lpl(µ) in a neighborhood of the origin are completely
characterized by solutions to (5.5). The proof is identical to that of [30, proof of Proposition 5.11,
step 6].

Lemma 5.2. The equation (Bpl(µ)−λM)u = 0 has a solution u ∈ L2
exp,0,−νlin(µ) with λ = γ2,Re γ >

0 if and only if (5.5) has a solution with Re γ ≥ 0.

At µ = γ = 0, the system (5.5) has a solution resulting from the translational mode q′
0(x) ∼ ν0u

0
0e

ν0x,
given by

w0 = β

ν0
(q′

0 − ν0u
0
0χ+e

ν0·) (5.6)
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for any β ∈ C. The linearization in w (in the space H2m
exp,0,η0) of the first equation in (5.5) about

this solution is PB0, which is invertible by construction, so we can use the implicit function
theorem to solve the first equation for w(β;µ, γ) for µ and γ small. Linearity in β and the
uniqueness of the solution found with the implicit function theorem then guarantees that we can
write w(β;µ, γ) = βw̃(µ, γ) for some w̃(µ, γ) ∈ H2m

exp,0,η0 with

w̃(0, 0) = 1
ν0

(q′
0 − ν0u

0
0χ+e

ν0·). (5.7)

The second equation in (5.5) may therefore be reduced to

E(µ, γ) :=
〈

(Bpl(µ) − γ2M)
(
w̃(µ, γ) + u−

pl(µ, γ)χ+e
νpl

− (µ,γ)·
)
, φ

〉
= 0. (5.8)

The linearization Bpl(µ) therefore has an eigenvalue (or more precisely a resonance pole) at λ = γ2

if and only if E(µ, γ) = 0, by Lemma 5.2. Note that E(0, 0) = 0 as a consequence of Lemma 2.3.
To track how this zero perturbs for µ, γ ≈ 0, we expand E(µ, γ) to leading order in µ and γ. We
compute

∂γE(0, 0) =
〈
B0
(
∂γw̃(0, 0) + (∂γu

−
pl(0, 0)χ+e

ν0· + u0
0∂γν

pl
− (0, 0)x)χ+e

ν0·
)
, φ
〉
. (5.9)

Note that ⟨B0(∂γw̃(0, 0)), φ⟩ = ⟨∂γw̃(0, 0), B∗
0φ⟩ = 0 due to the strong exponential localization of w̃.

Together with Corollary 5.1, we then have

∂γE(0, 0) = ∂γν
pl
− (0, 0)⟨B0[(u0

1 + u0
0x)χ+e

ν0x], φ⟩ + ∂γν
pl
− (0, 0)⟨u0

0, u
0
1⟩⟨B0(u0

0χ+e
ν0x), φ⟩ (5.10)

= ∂γν
pl
− (0, 0)⟨B0[(u0

1 + u0
0x)χ+e

ν0x], φ⟩, (5.11)

since ⟨B0(u0
0χ+e

ν0x), φ⟩ = 0 by Lemma 2.3. Also by Lemma 2.3, the remaining term on the right
hand side is non-zero, and so ∂γE(0, 0) ̸= 0. In particular, we can solve the equation E(µ, γ) = 0
for γ(µ) with the implicit function theorem. To track γ(µ), we now expand E(µ, γ) in µ. We will
use the following auxiliary result.

Lemma 5.3. We have

(∂µBpl(µ))q′
pl(x;µ) = −Bpl(µ)∂µq

′
pl(x;µ). (5.12)

Proof. Differentiating the traveling wave equation in space, we obtain Bpl(µ)q′
pl(·;µ) = 0. Differen-

tiating again in µ then implies the desired result.

With this lemma in hand, we now compute

∂µE(0, 0) = ⟨B′
pl(0)

(
w̃(0, 0) + u0

0χ+e
ν0·
)
, φ⟩ + ⟨B0[(∂µu

−
pl(0, 0) + u0

0∂µν
pl
− (0, 0)x)χ+e

ν0x], φ⟩
(5.13)

Using (5.7) and Lemma 5.3, we obtain

⟨B′
pl(0)(w̃(0, 0) + u0

0χ+e
ν0·), φ⟩ = 1

ν0
⟨B′

pl(0)q′
0, φ⟩ = − 1

ν0
⟨B0∂µq

′
pl(·; 0), φ⟩ (5.14)
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Using the asymptotics for qpl(x;µ) for large x from Theorem 1 (recall also u0(µ) and νlin(µ) defined
there), we see that

∂µ∂xqpl(x; 0) =
[
α′(0)u0

0 + ν0
(
α′(0)(u0

0x+ u0
1) + β′(0)u0

0 + u′
0(0) + xν ′

lin(0)u0
0

)]
eν0x + Q̃(x)

(5.15)

recalling that β(0) = 1 and α(0) = 0. The error term Q̃ is exponentially localized on the left and
decays faster than e(ν0−ε)x as x → +∞, and so in particular ⟨B0Q̃, φ⟩ = ⟨Q̃, B∗

0φ⟩ = 0. Also, by
Lemma 2.3, we have

⟨B0[(α′(0) + β′(0))u0
0e

ν0·], φ⟩ = (α′(0) + β′(0))⟨B0(u0
0e

ν0·), φ⟩ = 0. (5.16)
Hence, we obtain the simplification

− 1
ν0

⟨B0∂µq
′
pl(·; 0), φ⟩ = −α′(0)⟨B0[(u0

0x+ u0
1)eν0·, φ⟩ − ⟨B0[(u′

0(0) + xν ′
lin(0)u0

0)eν0·, φ⟩.

Returning to (5.13), note that u−
pl and νpl

− are smooth functions for which u−
pl(µ, 0) = u0(µ) and

νpl
− (µ, 0) = νlin(µ), where u0(µ) and νlin(µ) are as in Theorem 1. Hence

∂µu
−
pl(0, 0) = u′

0(0), ∂µν
pl
− (0, 0) = ν ′

lin(0).
Combining (5.14) and (5.16) with (5.13), we therefore obtain

∂µE(0, 0) = −α′(0)⟨B0[(u0
0x+ u0

1)eν0x, φ⟩. (5.17)
Combining with (5.11), we find E(µ, γ(µ)) = 0 with

γ(µ) = α′(0)
∂γν

pl
− (0, 0)

µ+ O(µ2). (5.18)

Proof of Theorem 2. By Lemma 5.2, and the above reduction, we have such a solution if and only
if Re γ(µ) ≥ 0, which occurs precisely when α′(0)µ < 0 since ∂γν

pl
− (0, 0) < 0. Since E(µ, γ) has

precisely one root in a neighborhood of the origin, λ(µ) = γ(µ)2 is the only resonance pole of
Lpl(µ) for µ sufficiently small. The resonance pole λ(µ) is an unstable eigenvalue for α′(0)µ < 0 by
(5.18).

5.2 Marginal stability of pushed fronts

We first note that the essential spectrum is stable since the speed of pushed fronts is strictly larger
than the linear spreading speed. A natural candidate for the point spectrum is the derivative of the
front solution, contributing to the kernel of the linearization provided growth conditions at infinity
are met. In our setting, these growth conditions are met precisely when eν−(µ,σ(µ))x has steeper
decay than eνlin(µ)x, which in turn occurs when σ(µ) > 0.

Proof of Theorem 2. Note that Lps(µ)(ω0,−νlin(µ)q
′
ps(·;µ)) = 0. By a stability analysis similar to

that of Section 5, this is the only solution to (Lps(µ) − λM)u = 0 in a neighborhood of λ = 0. We
therefore only need to check whether ω0,−νlin(µ)q

′
ps(·;µ) ∈ L2(R). But since

ω0,−νlin(µ)q
′
ps(x;µ) ∼ e(−νlin(µ)+νps

− (µ,σ(µ))x

for x large (and is exponentially localized on the left), this occurs precisely when −νlin(µ) +
νps

− (µ, σ(µ)) < 0. By the expansion in Lemma 4.1, this occurs precisely when σ(µ) > 0. The result
then follows from Proposition 4.4.
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6 Numerical continuation of pulled fronts and identification of the
pushed-to-pulled transition

Building on the analysis in the previous sections, we now turn our attention to developing a
numerical continuation routine to efficiently continue pulled fronts, pushed fronts and pushed-to-
pulled transitions. We approximate the infinite-domain problem studied until now with a boundary
value problem in a large finite domain, using the same decomposition of the invasion front solution
into a far-field element that captures the exact decay of the front and a more localized core function,
for which we impose additional boundary conditions to reflect the negative Fredholm index of
the linearization on the unbounded domain. As shown in Sections 3 and 4, the far-field term
includes an explicit exponentially decaying term of the form (αx+ β)eνx (or βeνx in the pushed
case) and the transition between pushed and pulled fronts occurs when α = 0. We show that our
method efficiently and accurately locates this transition point by bench-marking our routine against
examples where explicit transition points are known. We then turn our attention to several systems
of reaction-diffusion equations where explicit expressions for the transition value are not known.

6.1 Numerical far-field-core decomposition

We discuss our numerical strategy in the scalar case and point to modifications for systems for ease
of exposition.

Pulled front continuation. Our aim is to locate and continue pulled fronts propagating with
the linear spreading speed c that are solutions of the traveling wave equation,

P(∂x)u+ cux + f(u;µ) = 0. (6.1)

We seek an approximate solution in the form of a far-field core decomposition,

u(x) = u−χ−(x) + u+χ+(x) + (αx+ β)eνxχ+(x) + w(x), (6.2)

with cutoff functions χ± of the form

χ+(x) = (1 + emx)−1, χ−(x) = 1 − χ+(x), m ∼ 10,

so that derivatives of χ± are well resolved on our computational grid but derivatives essentially
vanish near the boundary of the computational domain, |x| ≳ 10.
We insert this ansatz with pre-computed derivatives for χ± into (6.1) and subtract the identities

0 = [P(∂x) + c∂x]u± + f(u±;µ),
0 = χ+(x)[P(∂x) + c∂x + f ′(0;µ)]((αx+ β)eνx),

Exploiting cancellations when subtracting can be somewhat tedious but helps with roundoff errors
when x is large.
The resulting equation is of the form

0 = P(∂x)w + c∂xw + g(x,w, α, β, ν, c), (6.3)
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and needs to be complemented with boundary conditions for w. For second-order P one can use
Dirichlet or Neumann boundary conditions with little noticeable difference and we mostly use
Neumann boundary conditions.
We next discretize the interval x ∈ [−L,L] with N subintervals and N centered grid points X ∈ RN .
We use N values of W at grid points as variables, which gives a total of N + 7 unknowns,

W ∈ RN , u−, u+ ∈ R, c, ν ∈ R, α, β ∈ R, µ ∈ R.

As equations, we require (6.3) to hold at the centered grid points, using finite-difference approxima-
tions of P and ∂x. We thereby obtain N equations, including the boundary conditions,

0 = PNW + cDN
1 W +G(X,W,α, β, ν, c), (6.4)

We use second or fourth order approximations of centered finite differences for PN and DN
1 . The

system (6.4) is complemented with equations for u±

0 = f(u−;µ), 0 = f(u+;µ). (6.5)

The variables c and ν are obtained from the dispersion relation, solving

0 = d(ν, c, 0;µ), 0 = ∂νd(ν, c, 0;µ), (6.6)

or some version of (2.4) in the case of systems. We finally add two conditions that account for the
variables α and β. First, we wish to enforce exponential decay of w faster than eνx, which amounts
to adding a transversality condition near the right boundary. In practice, we have observed that a
variety of transversality conditions may be employed and we typically default to the condition that
the core function satisfies WN +WN−1 = 0. Second, our ansatz allows for translation invariance
and we add a condition that pins the core to the center of the computational domain. Again, many
of such phase conditions will work in practice, and we use a Gaussian. Altogether, we solve (6.4),
(6.5), (6.6),

0 = WN +WN−1, (6.7)

and a discretized version of

0 =
∫ L

−L
e−x2

(
u(x) − u− + u+

2

)
dx. (6.8)

This system of N+6 equations for N+7 variables, including the parameter µ can then be augmented
by a secant condition to continue solutions and find in particular α(µ). Detecting values where
α(µ) = 0 then gives the desired location of the pushed-to-pulled transitions. Adding an equation
α = 0 and a second parameter µ2, we can similarly located curves of pushed-to-pulled transition in
2-parameter systems.
Adaptations for systems are straightforward. For u ∈ Rn, we have W ∈ RnN , u+, u− ∈ Rn,
α, β, c, ν, µ ∈ R for a total of n(N + 2) + 5 variables. The equations (6.4) and (6.5) are cast for
systems, yielding n(N + 2) equations, with an additional 4 equations from (6.6), (6.7), and (6.8).
Of course, (6.6) could be replaced by (2.4), which would yield the relevant eigenvectors u0/1(µ) in
the tail expansion (1.6).
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Pushed front continuation. The algorithm described above can easily be adapted to located
and follow pushed fronts to pushed-to-pulled transitions with minimal modifications. Since far-field
expansions should be purely exponential, the far-field ansatz simplifies to χ+(x)βeνx. On the other
hand, ν is simply a root of the dispersion relation, so that we effectively only replace the second
equation in (6.6), ∂νdc = 0, by the equation α = 0, otherwise retaining the system of equations
(6.4), (6.5), (6.6), (6.7), and (6.8).
We note that pushed fronts can in this fashion be naturally continued through the pushed-to-pulled
transition point to continue the family of traveling fronts found in Theorems 1–2, whose spatial
decay rates are weaker than the linear decay rate. We illustrate this in the examples considered
below. In order to understand exponential convergence rates, one quickly notices that errors from
the truncation in the wake decrease with the gap between stable and unstable eigenvalues of the
linearization at u−. Errors from truncation in the leading edge contain contributions from first the
linear ansatz (αx+ β)eνx, neglecting for instance quadratic terms O(x2e2νx), and from the effect
of boundary conditions, with errors related to the gap between the double root and next-nearest
eigenvalues. Projecting errors onto the kernel of the adjoint, which grows with exponential rate −ν
in the leading edge, predicts truncation errors with exponential eνL from the former contribution,
and eδνL with gap δν between the decay rate ν and the next nearest spatial eigenvalue.

Convergence aspects and comparisons to other methods. The approach to computing
pushed and pulled fronts presented here can be compared to more direct methods for computing
front speeds [36, 7] or to methods for computing heteroclinic orbits [6, 10].
A direct approach to finding wave speeds would be to study the invasion process in a finite domain,
appropriately shifting the wave front such that the front interface remains located near the center
of the domain, thus minimizing effects from boundaries [7]. Rather than dynamically relaxing the
dynamics, one could also employ a Newton method, using the wave speed as a Lagrange multiplier
associated with a phase condition that pins the front interface in the center of the domain. One thus
arrives at a boundary-value problem for the traveling-wave equation (6.1) together with a phase
condition similar to (6.8), but enforced on the full profile u, and the wave speed c as parameter.
Continuation for this system was systematically used in [36], studying variants of the Allen-Cahn
equation. The resulting convergence questions were discussed in [2], demonstrating that speed
and profile converge as L → ∞ with rate L−2 in the case of pulled fronts and with exponential
rate in the case of pushed fronts. There does not appear to be a way intrinsic to such a method
to determine whether a computed front profile is pulled or pushed. In fact, [2] gives examples of
anomalous wave propagation processes where the computed speed converges to an incorrect limiting
speed as L → ∞. We comment below on some scenarios where our algorithm breaks down upon
encountering such resonances leading to potential different modes of invasion.
Fronts considered here are of course heteroclinic orbits to the traveling-wave equation, cast as a
first-order dynamical system and there is a vast literature on computing such heteroclinic profiles,
including algorithms that systematically detect bifurcations [6, 10]. Pushed fronts fall into a standard
class of computation of codimension-1 heteroclinic orbits, in this case as intersections between an
unstable and a strong stable manifold. Convergence for such heteroclinic orbits is exponential in
the size of the domain, with rate for given by the gap between stable and unstable eigenvalues (or
strong and weak stable eigenvalues in the leading edge) for the profile and twice that rate for the
speed. Clearly, this gap converges to zero when the pushed front approaches the pushed-to-pulled
transition, so that the rate of exponential convergence for standard algorithms for finding pushed
fronts converges to zero. On the other hand, pulled front speeds are codimension-zero heteroclinic
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Figure 2: Left: Decomposition of the Nagumo front (6.9) according to (6.2), with full front solution (blue),
exponential far-field component (red), localized core (green) and left correction χ−(x) (black). Right: Pushed-
to-pulled transition for (6.9). For µ > 0.5 the invasion front is pulled and propagates with the linear spreading
speed (red); at µ = 0.5 the invasion front transitions from pulled to pushed; pushed invasion speed is hown
for µ < 0.5 (purple).

orbits, again with exponential convergence of profiles. The speed is of course best found directly
from the dispersion relation.
We do not pursue a full analysis of convergence of our algorithm, here. We do demonstrate below
that convergence of speeds is exponential with uniform rate across the pushed-to-pulled transition.

6.2 Applications

The Nagumo Equation. Perhaps the most familiar example of a pushed front occurs in the
Nagumo equation

ut = uxx + u(1 − u)(µ+ u), (6.9)

see for example [18]. One is interested in the regime µ > 0 where u = 0 is unstable, and then
studies the propagation of the stable state u = 1 into this unstable background. For any µ > 1

2
the invasion process is pulled in nature with a monotone front propagating at the linear spreading
speed 2√

µ. At µ = 1
2 a pushed front bifurcates that propagates with speed c =

√
2
(

1
2 + µ

)
. We

note that it is only in this particular cubic nonlinearity (and in a cubic-quintic case) that one is
able to explicitly locate the transition to pushed fronts. Known criteria that exclude pushed fronts,
such as f(u) ≤ f ′(0)u, are not sharp.
Our numerical results are illustrated in Figures 2-5.
In Figure 2, we present an overview of our algorithm showing the far-field core decomposition and
continuation of invasion fronts through the pushed-to-pulled transition. The front is given as a sum
of three terms: χ−(x) which provides the stable state in the wake of the front (the black curve in
Figure 2), (αx+ β)e−x which gives the far-field term (the red curve) and the core function w(x)
(the green curve).
We confirm that the algorithm is able to correctly identify the critical µ value at which the pushed-
to-pulled transition occurs. This convergence is observed to be exponential in L in Figure 3. We
remark that even for a fairly large spatial discretization value of dx = 0.1, the algorithm with
fourth-order accurate discretizations is able to obtain the critical value of µ to five correct decimal
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4th order
2nd order

Figure 3: Left: Convergence of the predicted pulled-to-pushed transition value for Nagumo’s equation (6.9)
as the spatial discretization is varied for second-order (red) and fourth-order (blue) discretization, with
slopes corresponding to the predicted slopes 2 and 4, repectively. Right: Errors in the computed transition
value as the length of the spatial domain L is increased, fixing dx = 0.02 for both second and fourth order
discretizations, with exponential convergence for fourth-order discretization and saturation at discritization
error for second-order discretizations.

places with only a moderately sized domain (L = 16). Thus, only approximately 300 gridpoints
are required and computational times are modest. In contrast, second order finite differences with
dx = 0.1 are, as expected, only able to obtain two correct decimal places. This is emphasized further
in Figure 3 where convergence of the observed critical µ values with respect to changes in dx are
shown.
Continuation through the critical value of µ = 0.5 demonstrates that the pulled-to-pushed transition
is marked by a loss of monotonicity in the leading edge of the traveling wave profile. This can be
observed in Figure 4. For µ > 0.5 the traveling wave is monotone and positive while for µ < 0.5
this traveling front persists but has lost monotonicity due to a change in the sign of α. Taking a
different approach we can also switch at µ = 0.5 to continue the pushed front out of the transition
point. This continuation is shown in Figure 5 where accurate, linear in µ, values for the pushed
invasion speed are obtained. In the other direction, we demonstrate that the pushed front can be
naturally continued through the bifurcation point at µ = 0.5 to obtain the family of weakly decaying
super-critical fronts that propagate with speeds greater than the linear spreading speed; see again
Figure 4.

Fisher-KPP-Burgers equation. Next, we consider the Fisher-KPP-Burgers equation,

ut + µ(uux) = uxx + u− u2, (6.10)

which was recently studied in [1] with focus on convergence rates for pushed and pulled fronts, and
fronts at the transition point. Front propagation is pulled for µ < 2 and pushed for µ > 2, with
explicit pushed speed cps = µ

2 + 2
µ . We focus here on the numerical continuation of pushed fronts

and show numerically determined front speeds and errors in Figure 6. Notably, errors are within
10−5 for L = 15 and dx = 0.1, so N = 300.

The extended Fisher-KPP equation. A generalization of the Nagumo equation that incorpo-
rates a fourth-order diffusion term arises in several contexts, particularly as an amplitude equation
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Figure 4: Left: Front profiles for Nagumo’s equation (6.9) for α = 0.1 (µ ≈ 0.620) and α = 0.75 (µ ≈ 0.126)
illustrating that the front loses monotonicity as α passes through zero. Right: Computed α and β values as µ
is decreased from 1.0. Note that α = 0 at µ = 0.5 makes a transition from pushed-to-pulled fronts.

Figure 5: Left: pushed front continuation through pushed-to-pulled transition follows the family of weakly
decaying super-critical fronts for the Nagumo equation (6.9). Right: Comparison of pushed and super-critical
speeds to the linear spreading speed 2√

µ near the transition value µ = 0.5.

Figure 6: Left: Pushed-to-pulled transition for Burgers-Fisher-KPP (6.10) as µ is varied. Right: Error
between numerically determined wave speed and analytical speed µ

2 + 2
µ . Throughout, L = 15 and dx = 0.1.
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Figure 7: Left: Pushed-to-pulled speed transitions for the Extended Fisher-KPP equation (6.11) for three
different values of γ. Pushed fronts are continued until the relevant spatial eigenvalue forms a double root
and the selected front loses monotonicity. Right: Decomposition of γ-µ parameter space into pushed and
pulled invasions for (6.11); note the limit of the transition on γ = 0, µ =

√
5 as predicted.

near certain codimension-two points,

ut = −γuxxxx + uxx + u+ µu2 − 10u3; (6.11)

see [37] for references particularly in the context of front invasion. Clearly, the equation reduces
to Fisher-KPP (or rather Nagumo’s equation) at γ = 0. The equation generates intriguing front-
invasion dynamics, even for µ = 0, with stationary invasion for γ < 1

12 and kink generation for
γ > 1

12 . We focus on the case γ < 1
12 and study the transition from pulled to pushed fronts as µ is

increased. Numerically determined invasion speeds are shown in Figure 7.
The dispersion relation for (6.11)

d(λ, ν) = −γν4 + ν2 + cν + 1,

allows for explicit formulas for speed and exponential decay but we find (c, ν) numerically as
described above. Our continuation routine is able to locate a transition from pulled to pushed
fronts as µ is increased. Numerical results for two different values of γ are provided in Figure 7.
It is worth noticing that the additional diffusion mechanism via a fourth order diffusion operator
leads to an effective decrease in spreading speeds. For γ small one may view (6.11) as a singular
perturbation of the classical Fisher-KPP equation. At γ = 0, simple scaling to match (6.9) predicts
a pushed-to-pulled transition at µ =

√
5. Using the methods of [3] to regularize the singular

perturbation, one can rigorously establish a curve of pushed-to-pulled transitions µ∗(γ) =
√

5 + o(1)
as γ → 0, which our numerical algorithm confirms.

A system modeling autocatalytic reactions. The following system of reaction-diffusion
equations modeling autocatalytic reactions was considered in [16] from a point of view of front
propagation,

ut = uxx − uv − kuv2

vt = σvxx + uv + kuv2. (6.12)

The system possesses two lines of equilibria where u = 0 or v = 0. We focus on fronts connecting
the unstable state (u, v) = (1, 0) to the marginally stable state (u, v) = (0, 1). Associated with the
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Figure 8: Left: Pushed-to-pulled transition in σ-k parameter space for the system of equations modeling
autocatlytic reactions given in (6.12). The data on the left represents two separate continuation runs –
one that starts near σ = 4.0 and decreases to σ = 0.5 and a second that starts at σ = 0.45 and continues
down in σ. In this example, we use L = 20 and N = 400 for an spatial discretization dx = 0.1. Right:
Pushed-to-pulled transition for (6.12) for fixed σ = 1.0 and varying k.

unstable state, we have the linearization

A(λ, ν, c, k) =
(
ν2 + cν − λ −1

0 σν2 + cν + 1 − λ

)
,

which is in upper triangular form, so that the dispersion relation factorizes

d(λ, ν) =
(
ν2 + cν − λ

) (
σν2 + cν + 1 − λ

)
, (6.13)

leading to a simple expression c0 = 2
√
σ for the linear spreading speed (note however Remark 6.1

for some caveats to this consideration). Our algorithm splits solutions componentwise according to
(6.2),

u(x) = u−χ−(x) + u+χ+(x) + (δx+ γ)eνxχ+(x) + wu(x)
v(x) = v−χ−(x) + v+χ+(x) + (αx+ β)eνxχ+(x) + wv(x), (6.14)

where δ and γ are easily found in terms of α and β explicitly. We impose a phase condition on the
u component only (either component would suffice) and the transversality condition (6.7). Our
continuation consists of two steps: first we fix σ and continue in k until we reach a value where
α = 0 (the push-pulled transition value). We then perform secant continuation while fixing α = 0
to continue the pushed-to-pulled transition in parameter space. Due to a resonance at σ = 1

2 our
routine is unable to continue pulled fronts through this value and so continuation must be performed
on either side of this value and then matched; see Remark 6.1. Results are shown in Figure 8 and
compare well with the numerical results in [16], where a shooting method was used to detect the
transition from monotone to non-monotone tail behavior for fronts propagating at the linear speed.

Remark 6.1. The dispersion relation (6.13) has four roots with two from the linearization of the u
component ν±

u = − c
2 ± 1

2
√
c2 − 4λ and two from the v component ν±

v = − c
2σ ± 1

2σ

√
c2 − 4σλ. Note

that when σ = 1
2 then ν−

u (0) = ν±
v (0) = −

√
2. This resonance between the eigenvalues implies that

the pulled front ansatz in the u component is insufficient and would require a term that is quadratic
in x. Thus, the resonance prevents the continuation of pulled fronts through σ = 1

2 as |δ| → ∞ as
σ → 1

2 .
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We also note that when σ < 1
2 the pinched double root no longer contains the weakest decaying stable

roots since ν±
v (0) < ν−

u (0). While this precludes a direct application of our main theorems, one can
adapt the functional analytic setting using different exponential weights in u- and v-components and
obtain the same result in this setting. Numerically, the method applies without modification.

We also remark in passing that when σ < 1 there exists an unstable pinched double root caused by
the resonance ν−

u (λ) = ν+
v (λ). This pinched double root is in general related to anomalous spreading

speeds but is in the present case irrelevant in the terminology of [21, 23] so that the selected invasion
speed is still the linear speed 2

√
σ in this case. More information on relevant and irrelevant speeds

and how these are enabled or disabled by linear or nonlinear coupling terms related to resonances in
the linear dispersion relation can be found in [14].

A Keller-Segel model with repulsive interaction. We next consider the Keller-Segel model
for chemotactic motion with logistic population growth,

ut = uxx + χ(uvx)x + u(1 − u)
0 = σvxx + u− v, (6.15)

for a population u of bacteria which produce a rapidly diffusing and decaying chemical agent v, and
which move with speed proportional to the gradient of the chemical signal vx. When χ = 0 the
first equation decouples and is simply the Fisher-KPP equation with pulled invasion speed c = 2.
This linear predicted speed is unaffected by the nonlinear coupling when χ ̸= 0. We focus here on
the case χ > 0 so that the quadratic term χ(uvx)x is repulsive, modeling negative taxis, that is,
motion of bacteria away from locations of high signal concentrations, and thereby away from high
concentrations of other bacteria. Such an effect could clearly be able to accelerate the spreading of
bacteria, enhancing the diffusive motion of bacteria from a high-concentration region where u ∼ 1 to
the unstable region where u ∼ 0. Note however that the chemotactic effect is essentially quadratic
in the amplitude of u and it is therefore not a priori clear how it would compete with the quadratic
saturation of growth −u2.
For χ sufficiently large this repulsive effect does indeed lead to propagation via pushed fronts, as
was recently demonstrated in [20], particularly when χ > 2 and σ ≫ 1.
We investigate this pushed-to-pulled transition in σ-χ parameter space using our computational
approach. The linearization at the unstable state (0, 0) is in triangular form,

A(λ, ν, c, σ) =
(
ν2 + cν + 1 − λ 0

1 σν2 − 1

)
,

with dispersion relation factored as

d(λ, ν) = (ν2 + cν + 1 − λ)(σν2 − 1).

The linear spreading speed is always the Fisher-KPP speed c0 = 2. The continuation set-up in this
case is similar to that of the system (6.12). The main difference is that the v component lacks any
advective terms. We first continue in χ from χ = 0 until the pulled-to-pushed transition and then
continue the transition in two parameters; see Figure 9. Due to the skew-product nature of the
dispersion relation we again find resonances that prevent direct continuation of the pushed-to-pulled
transition curve over all values of parameters. In particular, when σ = 1, one root of the v component
aligns with the critical decay rate ν = −1. Direct continuation of the transition through this value
of σ is not possible using our routine.
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Figure 9: Left: Pushed-to-pulled transition in σ-k parameter space for the Keller-Segel system (6.15). Right:
Pulled and pushed invasion speed for (6.15) with σ = 3.50 fixed.

Lotka-Volterra competition model. As a final example, we briefly consider the Lotka-Volterra
competition model,

ut = uxx + u(1 − u− a1v)
0 = σvxx + rv(1 − a2u− v). (6.16)

When a1 < 1 < a2 the equilibrium point (0, 1) is unstable and the dispersion relation is

A(λ, ν, c, σ) =
(
ν2 + cν + 1 − a1 − λ 0

−ra2 σν2 + cν − r − λ

)
.

The linear spreading speed is c0 = 2
√

1 − a1, although we note that there is a faster linear invasion
speed which is not relevant; see [22] for a detailed discussion of this phenomena.
Traveling front solutions of (6.16) have been studied by many authors; see for example [24]. A
particular focus has been on locating regions in parameter space where the invasion fronts are pulled
or pushed. In Figure 10, we demonstrate how our routine can be used to quickly determine numerical
approximations to these pushed-to-pulled transition curves. Here we fix two parameters (σ = 1.0
and a1 = 0.5) and vary the remaining two parameters (a2 and r). We compare our numerically
determined transition curve to known analytical results presented in [27] where it is shown that the
invasion front is pulled when a2 <

2
r + 2 (with σ = 1.0 and a1 = 0.5 fixed). It was conjectured in [24]

that the blue pushed-to-pulled transition curve has a vertical asymptote at a2 = 2 (for a1 = 0.5).
Our numerical continuation, while not necessarily accurate for arbitrarily large values of r, suggests
that this asymptote occurs for some value of a2 > 2.

7 Discussion

We presented an analytical and computational study of the transition from pushed to pulled front
invasion. Both analytical and computational results rely on a far-field-core decomposition with
explicit tail corrections. Compared to previous numerical techniques, our algorithm converges
exponentially in the size of the domain and detects the transition point accurately. We suspect
that the analytic approach towards finding eigenvalues and resonances in the linearization could be
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Figure 10: Left: Pushed-to-pulled transition in a2-r parameter space for the Lotka-Volterra model (6.16). All
other parameters are fixed to σ = 1.0, a1 = 0.5 and a2 = 5.0. For parameters below the black dashed line the
invasion process have been proved to be pulled; see [27]. Right: Continuation of pushed and super-critical
fronts from the pushed-to-pulled transition point. The red line indicated the linear spreading speed 2

√
1 − a1

with a1 = 0.5 for all computations.

adapted to numerical algorithms in a similar fashion as the nonlinear existence result was adapted
to numerical continuation.
As a first generalization, one would wish to adapt both analysis and numerics to include oscillatory
invasion, that is, cases when marginal linear stability is caused by double roots (λ, ν) on the
imaginary axis, that is, λ = iω with ω ̸= 0. A transition to this scenario was in fact the limit of
validity of our numerical study in the EFKPP case. The tools developed here can in fact be adapted
in a straightforward fashion. One would look for time-periodic solutions in a comoving frame, add
a phase condition eliminating temporal shifts, and the frequency as a Lagrange parameter in the
case of pushed fronts. For pulled fronts, the parameters in the asymptotics α and β are complex,
compensating for now two phase conditions for space and time and two transversality conditions.
We expect quadratic corrections to both linearly predicted speed and frequency for pushed fronts.
Clearly, both analytical and numerical setup now require a PDE rather than an ODE boundary-value
problem, although Fourier-expansions in the temporal variable converge rapidly and reduce the
problem to one similar to the present case; see for instance [12, 32] for more background on this
analogy and an analytical existence result for fronts in this context, [29] for numerical aspects.
In the particularly interesting case where patterns are selected in the wake, one would adapt the
far-field core strategy to insert a periodic solution u(kx; k), u(y) = u(y + 2π; k), which in turn is
computed separately from a periodic boundary-value problem; see [28, 11] for implementations of
this approach using spectral discretization.
Including this case of oscillatory invasion, one then is tempted to ask for a broad strategy of
predicting, analytically or computationally, invasion speeds. The present work presents one step in
this direction, but also detects caveats. Without venturing into an open ended discussion of what
could possibly go wrong, we point here to the problems with resonances in some of the computational
examples, in particular Remark 6.1, to the discussion in [4] for perspective, and [14] for an attempt
at broadening the concept of linear spreading speeds to general resonances, possibly comprising all
linear mechanisms of invasion and leaving only point spectrum instabilities as the ones discussed
here as means of altering linear prediction.
In a different direction, one can compare the analysis here with bifurcations of coherent structures
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elsewhere. Detaching of defects from a speed of propagation determined by a background field
was identified in [33, §6.4] as a generic bifurcation. Defects are localized structures asymptotic
to wave trains. Contact defects travel with the group velocity of the background state, whereas
transmission defects travel with a nonlinear speed different from that group velocity. Expanding
on the discussion presented there, one finds the same universal quadratic correction to speeds in
the bifucation that we identified here. The methods there were geometric rather than functional
analytic, but the underlying homoclinic codimension-two bifurcation can be recovered in our context
using geometric desingularization of the leading-edge equilibrium as demonstrated in [2].
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