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Abstract

In this paper, bifurcations of stationary and time-periodic solutions to reaction-
diffusion systems are studied. We develop a center-manifold and normal form theory
for radial dynamics which allows for a complete description of radially symmetric
patterns. In particular, we show the existence of localized pulses near saddle-nodes,
critical Gibbs kernels in the cusp, focus patterns in Turing instabilities, and active
or passive target patterns in oscillatory instabilities.
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CHAPTER 1

Introduction

Pattern formation in reaction-diffusion systems has been an intensive area of
research in pure and applied mathematics, in chemistry, in biology, and in physi-
ology. A challenging variety of biological patterns is found in D’Arcy Thompson’s
work “On growth and form” from 1917, who was one of the first to attempt a
mathematical, though still phenomenological description of pattern forming pro-
cesses [Tho17]. Later, Alan Turing [Tur52] emphasized the crucial interplay be-
tween simply chemical reaction kinetics and diffusive transport in modeling pat-
tern forming processes. Reducing the complex inner-cellular dynamics to a simple
reaction-diffusion system, he was able to explain the creation of stable structured
states from an unstructured, homogeneous equilibrium of the system. However,
reaction-diffusion systems attracted mathematical interest much earlier. For ex-
ample, in the early work by Kolmogorov, Petrovsky, and Piscounov [KPP37] on
travelling waves, we find the first mathematical attempt to describe competition
and interaction between different states of a chemical or biological system.

Spatio-temporal pattern formation became accessible to a systematic mathe-
matical study through the development of bifurcation theory. Bifurcation theory,
in a very broad sense, is the study of qualitative changes in the behavior of a dy-
namical system, caused by variations of certain control parameters. There are two
typical examples. The simplest one is the fold, where in the equation

ẋ = µ− x2,

two new equilibria appear when the parameter µ is increased above zero. The
mathematical analysis arguably goes back to ancient Babylonia 700 b.c., where the
quadratic formula was first discovered. In the second, typical, instability mechanism
in a dynamical system, a periodic solution is created when a stationary state looses
its stability; see [AW30, Hop43]. In the complex model equation

ż = (µ+ i)z − z|z|2 ∈ C,

a stable periodic orbit is created when the parameter µ is increased above zero and
the origin looses stability; see the bifurcation diagrams in Figure 1. The fold, typi-
cally referred to as a saddle-node bifurcation in dynamical systems, and the Hopf
bifurcation occur in open classes of one-parameter families of dynamical systems. In
both cases, at most one dynamically stable state of the dynamical system exists for
each fixed parameter value. Adding a second parameter, one can find bifurcations
in typical families of dynamical systems, where two stable states coexist for fixed
parameter values — a situation, we are particularly interested in, here. Typical
examples are the cusp

ẋ = µ1 − µ2x− x3

1



2 1. INTRODUCTION

x

µ

z

µ

Figure 1. Bifurcation diagrams for the fold and the Hopf bifur-
cation. Dashed lines denote unstable solutions, arrows indicate
dynamics.

and the weakly subcritical Hopf bifurcation

ż = (µ1 + i)z + µ2z|z|2 − z|z|4 ∈ C,

see Figure 2 for the bifurcation diagrams.
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Figure 2. The two-parameter bifurcation diagram for the cusp
and the bifurcation diagram for the degenerate Hopf bifurcation in
case µ2 > 0.

When the state variable of a dynamical system depends on a spatial variable,
many new questions arise. As already mentioned, Turing [Tur52] first noticed
that spatially distributed systems exhibit different instability mechanisms. In a
two-species reaction-diffusion system, the spatially homogeneous equilibrium may
become unstable first with respect to spatially structured perturbations — despite
the spatially homogenizing effect of diffusive coupling. Nonlinear saturation may
then lead to the creation of steady, spatially periodic, stable patterns, which are
usually referred to as Turing patterns (although his analysis was purely linear).
The example in Turing’s work was a (linear and spatially discrete) prototype of an
activator-inhibitor system

∂tU1 = ∂xxU1 + f(U1, U2)

∂tU2 = d∂xxU2 + g(U1, U2),

where d > 1, f(0, 0) = g(0, 0) = 0, ∂U1
f > 0, ∂U1

g > 0 and ∂U2
f < 0, ∂U2

g < 0.
More generally, instabilities in reaction-diffusion systems

(1) ∂tU = D4xU + F (U ;µ)



1. INTRODUCTION 3

lead to the emergence of families of spatio-temporally periodic states, parameter-
ized by the spatial wave number k close to a critical wave number |k| ∼ k∗ ≥ 0.
Bifurcation theory, through the steps of reduction to center manifolds, followed
by normal form transformation and discussion of the reduced equations — pos-
sibly exploiting various symmetries of the problem — was particularly successful
in explaining shape and dynamics of spatially periodic patterns such as stripes or
hexagons [GSS88, IA92, CI94]. However, localized structures like defects or in-
terfaces between spatially homogeneous or periodic states escaped these approaches
which impose spatial periodicity in function spaces.

A second, important, question, particular to spatially extended systems, arises
when a stable and an unstable, or two different stable equilibria coexist. If spatial
coupling is weak or, if the domain is very large, the system might initially be in two
different states in different regions of the domain. Spatial competition between the
two states is best described by the motion of interfaces. The most detailed results
on existence and stability of these interfaces are available in one spatial dimension.
Interfaces between spatially homogeneous equilibrium states often propagate with
constant speed and are called travelling waves. They can be found as spatially
structured equilibria of the original reaction-diffusion system in an appropriately
comoving frame ξ = x− ct, in which the equation reads

0 = Ut = D∂ξξU + c∂ξU + F (U ;µ);

see Figure 3.

U

c

x

Figure 3. A schematic picture of a travelling wave solution to a
reaction diffusion system.

This steady-state equation can then be rewritten as a dynamical system in
spatial “time” ξ

Uξ = V, Vξ = −D−1(cV + F (U ;µ)).

Travelling waves are heteroclinic orbits to the above ordinary differential equation,
see Figure 4. However, interfaces between time-periodic patterns and homogeneous
states cannot be found in the above steady-state ordinary differential equation.
Similarly, competition between Turing patterns and spatially homogeneous equi-
libria leads to an oscillatory motion of the interface, and becomes invisible in the
steady-state equation.

As a partial remedy, Kopell and Howard suggested to study oscillatory patterns
in λ-ω-systems, where a rotational symmetry in the reaction kinetics enabled them
to find oscillatory patterns as equilibria in a spatially comoving and kinetically
corotating frame [HK77]. The extension from the artificial rotational equivariance
to general kinetics remained formal in this early work; see [DSSS00] for a recent
account.

Kirchgässner overcame these technical difficulties in a slightly different con-
text [Kir82]. He could generalize center manifold theory to dynamically ill-posed
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V

U

Figure 4. The travelling wave in the phase space of the ODE.

elliptic problems, as they arise in fluid mechanics or in the above mentioned os-
cillatory motion of interfaces. On the center manifold, he recovered an ordinary
differential equation which described small amplitude solutions of an elliptic equa-
tion in an unbounded strip. The idea was largely exploited later in the study of free
surface water-waves [Kir88, IK92], and in elasticity problems [Mie88b]. Morally,
the emanation of small amplitude patterns is caused by essential spectrum of the
linearized operator on the imaginary axis. Noncompact translation symmetry, un-
avoidable in an idealized description of competition by propagating interfaces, en-
forces failure of compactness of the resolvent and prevents the application of direct
methods from bifurcation theory, such as Lyapunov-Schmidt reduction. The usage
of spatial dynamics avoids the essential spectrum. In the restriction to steady or
time-periodic patterns, the essential spectrum appears in the form of isolated neu-
tral eigenvalues on the imaginary axis. For example, the continuum of eigenvalues
λ = −k2, k ∈ R, of the operator ∂xx on the real line turns into a simple Jordan block
to the eigenvalue 0 for the steady-state problem ux = v, vx = 0. The nonlinear
bifurcation problem for the spatial dynamical system is then accessible to methods
from bifurcation theory — although dynamics now do have a completely different
interpretation as spatial instead of temporal changes in the solution profile.

However, the approach via spatial dynamics is constrained to one effective un-
bounded dimension, singled out as the direction of spatial time. Attempts to gen-
eralize the approach to more than one space dimension lead to nonlocal bifurcation
equations [Mie92].

A more general approach to bifurcations from the essential spectrum has been
developed, exploiting variational structure or sign conditions on the nonlinearity
instead of spatial dynamics; see the review in [Stu97]. In consequence, a detailed
description of the bifurcation diagram could be obtained only in special cases.

The goal of the present work is to extend the method of spatial dynamics to
higher space dimensions, restricting the attention to radially symmetric solutions.
The radius serves as the spatial time variable.

The literature on radially symmetric solutions to elliptic problems is vast; see
for example the references in [Bre99]. Nevertheless, the present work gives new
contributions in at least three aspects.

First of all, we develop a systematic bifurcation theory, including the particular
case of essential spectrum crossing the imaginary axis. Main result is a reduction
method together with a normal form theorem. Nontrivial solutions are found from
a matching procedure, replacing typical shooting arguments in previous works.
The reduction procedure shows that, even for systems of equations, the typical
phenomena from scalar elliptic equations in R

n occur, whenever the kernel of the
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linearization is one-dimensional, see Theorems 3.18 and 3.19 for the cases of a fold
and a cusp in the reaction kinetics, respectively.

Second, in systems of elliptic equations, the Turing instability, which leads
to stable, spatially periodic patterns in one space dimension, may create focus
patterns; see Theorem 3.20. These patterns resemble stationary targets, where
level lines of a fixed species come in infinitely many circles, spaced almost equidis-
tantly. Along rays, emanating from the center, we find the one-dimensional, stable,
spatially periodic structures. A variant of these patterns has been observed in
Rayleigh-Bénard convection [Cro89], where a Turing-type instability leads to a
convective state replacing the unstable pure conductive state of the fluid; see Fig-
ure 5. Level lines of a fixed species here correspond to regions of, say, upward
pointing velocity fields. A (formal) theoretical analysis of such patterns has been
initiated in [BS78, PZM85]. However, approximate descriptions using phase-
diffusion equations break down in a neighborhood of the center of the pattern.

Figure 5. A schematic plot of the bifurcating focus pattern and a
picture from Rayleigh-Bénard convection in a cylindrical container;
with permission, from the Annual Review of Fluid Mechanics, Vol-
ume 32, 2000 by Annual Reviews, www.AnnualReviews.org
[BPA00].

Thirdly, we are able to adapt the method to time-periodic patterns, includ-
ing target patterns as observed in the Belousov-Zhabotinsky reaction; see The-
orems 4.12 and 4.13 for existence of target patterns. We also refer to [Gre78,

KH81a, KH81b] for previous work on existence of target patterns. Phenomeno-
logically, a point-source in the center of the pattern is emitting waves in concentric
circles. Far away from the center, we see spatially periodic waves along rays ema-
nating from the center, which travel away from the center with positive phase and
group velocity.

Technically, the main idea for the reduction method is inspired by the reduc-
tion procedure in [Sche98]. The goal there was to find spiral wave solutions in
reaction-diffusion systems close to a Hopf bifurcation point in the reaction kinetics.
In particular, solutions there were allowed to depend on the angular variable ϕ,
whereas we allow dependence on time t, here. The technical difficulties, here, arise
in the center of the patterns, whereas in [Sche98], the far-field required a more sub-
tle analysis. Extending the results in [Sche98], we develop a normal form theory
for dynamics in the radial variable, which allows us to treat general nonlinearities.



6 1. INTRODUCTION

Physically, the patterns found in the present work should be interpreted partly
as point defects, partly as coexistence boundaries. The pattern of concentric circles
is a defect because the local wave vector cannot be extended continuously into the
origin with range in the circular band of allowed unstable wave vectors. Coexistence
patterns are found in case of a cusp in the kinetics. The kernel of the linearization
in the kinetics is one-dimensional and we recover at leading order patterns from
scalar elliptic equations. One of the stable states occupies a large disc or ball (the
Gibbs kernel), whereas the rest of the domain is filled with the other stable pattern.
Coexistence patterns occur in open regions of parameter space, but are typically
unstable. They are most accurately interpreted as the minimally sized region, the
inner pattern has to occupy in order to conquer the outer state. Smaller discs or
balls will eventually disappear, whereas any larger disc will grow and tend to fill
the whole domain. This is in contrast to the spatially one-dimensional situation,
where coexistence between homogeneous or temporally periodic states only occurs
for exceptional parameter values, as a codimension-one phenomenon. The reason is
a type of interfacial energy which increases linearly (in R2) with the diameter of the
disc and penalizes growth of the disc. The region filled with the preferred pattern,
which is proportional to the energy gain by expansion, increases quadratically with
the diameter. The patterns uncovered here mark precisely the point of balance
between these two growth behaviors. We emphasize however that the dynamics we
consider are not gradients of an energy functional, not even gradient-like. Gradient-
like dynamics are restored only in the case of a stationary instability and only after
reduction to a spatial center manifold. Coexistence patterns occur in oscillatory
instabilities as well. In the weakly subcritical Hopf bifurcation, we may find a
centered ball filled with the stable stationary state, whereas the complement is
filled with concentric wave-trains, which are emitted from the homogeneous state.
In this sense, we find coexistence as a new mechanism for the creation of target
patterns.

Defects and critically sized interfaces as we find them here occur in many sys-
tems, other than reaction-diffusion systems. We mention phase-field models [CF87]
from material science, Rayleigh-Bénard convection [Cro89], and the Swift-Hohen-
berg equation [SH77]. Oscillatory patterns are observed for example in chemical
reactions [FB85], in nematic liquid crystals [CH93, Sec. IX.C], and in trans-
versely extended lasers [AGRR90, BBLPPTW91]. Still, reaction-diffusion sys-
tems seem to provide a sufficiently large class of spatially extended dynamical sys-
tems, where typical spatio-temporal patterns can be analyzed systematically.

Outline: In Chapter 2, we review instabilities in one spatial dimension. The
main technical tools such as center manifold reduction, normal form transforma-
tions, and transversality are introduced. We focus on coexistence patterns. Most of
the results are not new, although they have not been stated for the case of reaction-
diffusion systems in the literature. We mostly sketch the proofs, emphasizing the
crucial points that will reappear in the analysis of radially symmetric patterns,
later. In the subsequent chapters, we rely on the basic ideas introduced in this
chapter. The main results are contained in Chapters 3 and 4.

In Chapter 3 we prove a nonautonomous center manifold reduction, Section 2,
and give a normal form algorithm, Section 3. Scaling, derivation of universal re-
duced equations at leading order, and matching with the core region on the center
manifold, as the main part of the bifurcation analysis, are found in Section 4.
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Chapter 4 extends the reduction procedure to radially symmetric, time-periodic
solutions. The reduction theorem is stated and proved in Section 2. Reduced vector
fields and typical examples of patterns are given in Sections 3 and 4.

We conclude in Chapter 5 with an extensive discussion. In particular, we
outline a stability analysis of radially symmetric patterns, we show existence of
non radially symmetric patterns, and we briefly discuss the effects of a small hole
in the center of the domain.
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work. First, I want to thank Bernold Fiedler for support and criticism throughout
the years. Without his insistence, this paper would not have been written.

Large parts of the discussion on stability are motivated by joint work with Björn
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Iooss, and Eric Lombardi.

I would also like to thank Arjen Doelman and Gérard Iooss for their many
helpful comments on an earlier version.

To my colleagues in Berlin, Messoud Efendiev, Jörg Härterich, Christian Leis,
Stefan Liebscher, and Karsten Matthies I owe many thanks for sharing their time
and ideas with me.
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CHAPTER 2

Instabilities in one space dimension

1. Introduction

We consider reaction-diffusion systems

(2) Ut = DUxx + F (U ;µ),

with N species U ∈ R
N , a p-dimensional real parameter µ ∈ R

p, smooth re-
action kinetics F ∈ C∞(RN × Rp,RN ), and positive, diagonal diffusion matrix
D = diag (dj) > 0, on the real line x ∈ R. We are interested in pattern formation
from a homogeneous equilibrium state. We therefore assume that U(t, x) ≡ 0 is a
solution of (2) at µ = 0. Aiming towards a bifurcation analysis, we consider the
linearized equation about the equilibrium U ≡ 0:

(3) Vt = DVxx + ∂UF (0; 0)V =: L0V.

Equations (2) and (3) define (local) semi-flows on the space of bounded, uniformly
continuous functions BC0

unif(R,R
N ). The operator L0 : D(L0) ⊂ BC0

unif → BC0
unif

is a sectorial operator [Hen81, Yos71], which we consider on the complexification
BC0

unif(R,C
N ) as well. Denote by specL0 the spectrum of L0. It is not hard to see

that U ≡ 0 is isolated in the set of bounded solutions I ⊂ BC0
unif(R,R

N ) defined
as

I = {U0; there is a solution U(t, x) ∈ BC0(R×R,RN ) of (2), with U(0, ·) = U0},
if specL0 ⊂ C− := {z ∈ C; Re z < 0}; see [Hen81]. We therefore analyze the
situation, when specL0 ⊆ C− but specL0 6⊂ C−.

In Section 2, we classify typical scenarios of marginal stability, where specL0

touches the imaginary axis. Upon varying the parameter µ, the spectrum of the
linearization about the trivial equilibrium typically crosses the imaginary axis.

We then proceed to analyze bifurcating solutions in Sections 3 and 4, depending
on whether specL0 ∩ iR = {0}, a stationary instability, or specL0 ∩ iR = {±iω∗},
an oscillatory instability. The strategy will be to look for time-independent or
time-periodic solutions.

We use center manifold reduction and normal form theory to reduce the problem
to a universal model equation. Objects of interest are steady interfaces between
stable states of the reaction-diffusion system.

Most of the results are not new, though one might not find the statements for
the case of reaction-diffusion systems in the literature. Center manifold reduction
goes back to [Pli64, Kel67], for ordinary differential equations, and to [Kir82,

Mie86, IM91] for elliptic-type partial differential equations, as considered in Sec-
tion 4.

Normal form theory as used here has been elaborated in [ETBCI87]; see also
the review [CS90]. The discussion of solutions of model equations in the stationary

9



10 2. INSTABILITIES IN ONE SPACE DIMENSION

case is elementary, whereas in the case of Hopf bifurcation, we refer to results
of [KH81a] and [vSH92].

2. Classifying instabilities of reaction-diffusion systems

We start analyzing the spectrum of L0 as defined in (3). The following elemen-
tary lemma is well-known.

Lemma 2.1. A complex number λ belongs to the spectrum specL0 if, and only
if, there is a k ∈ R such that

(4) d(k, λ) = det (−Dk2 + ∂UF (0; 0) − λ) = 0.

Proof. First assume the determinant is zero and let U0 ∈ C
N belong to the kernel

of (−Dk2 + ∂UF (0; 0) − λ). Then U0e
ikx belongs to the kernel of L0 − λ, which

proves the ‘if’-part.
For the ‘only-if’-part, let us first consider the operator L0 on L2(R,CN ). Then

L0 is conjugate to its Fourier transform L̂0 with ((L̂0 − λ)Û)(k) = −k2DÛ(k) +

∂UF (0; 0)Û(k) − λÛ(k). Since the right side is invertible for each k, we obtain
the inverse of L0 − λ as the convolution with the Fourier transform of (−Dk2 +
∂UF (0; 0) − λ)−1, which is an exponentially localized function. The convolution
operator can also be defined on BC0

unif(R,C
N ), where it defines a continuous op-

erator L̃, which can easily be checked to be a left inverse of L0 −λ. Since L0 −λ is
injective — elements in the kernel are solutions to an ordinary differential equation
which does not have spectrum on the imaginary axis —, L̃−λ is also a right inverse,
which proves the lemma.

Summarizing, we may assume

(5) det
(

−Dk2
∗ + ∂UF (0; 0) − iω∗

)

= 0,

for some k∗ ∈ R, whenever we want to assume iω∗ belongs to specL0.

Hypothesis 2.2. [Criticality] Assume L0 is marginally stable with critical
eigenfunction U0e

ik∗x to the unique critical eigenvalue iω∗, up to complex con-
jugation:

(i) det (−Dk2 + ∂UF (0; 0)− λ) 6= 0 for all k ∈ R and all λ ∈ C with λ 6= iω∗
and Reλ ≥ 0.

(ii) det (−Dk2 + ∂UF (0; 0) − iω∗) 6= 0 for all k 6= ±k∗.
(iii) det (−Dk2

∗ + ∂UF (0; 0) − iω∗) = 0.

Definition 2.3. [Types of instability] According to Hypothesis 2.2, we distin-
guish four different cases of criticality:

(i) stationary homogeneous instabilities (O); k∗ = 0, ω∗ = 0.
(ii) Turing instabilities (T); k∗ 6= 0, ω∗ = 0.
(iii) Hopf instabilities (H); k∗ = 0, ω∗ 6= 0.
(iv) Turing-Hopf instabilities (TH); k∗ 6= 0, ω∗ 6= 0.

The first two cases are referred to as stationary instabilities, the other two as
oscillatory instabilities.

The spatio-temporal shape of the eigenfunctions is illustrated in Figure 1.

Remark 2.4. Sometimes, the name Turing-Hopf bifurcation is used to refer
to a codimension-two instability, where simultaneously two eigenfunctions, a Hopf
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Figure 1. Spatio-temporal shape of eigenfunctions in cases (T),
(H), and (TH) from left to right.

eigenfunction U1e
iωt and a Turing eigenfunction U2e

ikx are critical. We do not
discuss this type of instability, here.

We assumed one, and only one, critical eigenvalue iω∗, up to complex con-
jugation, to be located in the closed right half plane. We also assume that this
eigenvalue is simple in a general sense.

Hypothesis 2.5. [Simple critical eigenfunction] We assume that

(6) ∂λ[det
(

−Dk2
∗ + ∂UF (0; 0) − λ

)

]|λ=iω∗
6= 0.

By Hypothesis 2.5 we may solve (4) for λ with k close to k∗ for λ = λ∗(k), with
λ∗(k∗) = iω∗. Since det (−Dk2 + ∂UF (0; 0) − λ) 6= 0 for Reλ > 0 and k ∈ R, we
necessarily have Re ∂kλ∗|k=k∗

= 0. We assume that the second derivative does not
vanish.

Hypothesis 2.6. [Quadratic tangency] We assume

(7) Re
d2λ∗(k)

dk2
|k=k∗

< 0,

where λ∗(k) was defined above as the spectral curve close to the imaginary axis.

In case of a Turing-Hopf instability, there is another nontrivial quantity arising
at the linear level, namely the derivative of the imaginary part of the dispersion

relation Im dλ∗(k)
dk |k=k∗

=: cg.

Hypothesis 2.7. [Nonzero group velocity] In case of a Turing-Hopf instability
(TH), we assume cg 6= 0.

So far we have collected the main assumptions on the possible linearizations
of the reaction-diffusion system at criticality. The remainder of the section col-
lects assumptions on typical unfoldings: we assume that the spectrum crosses the
imaginary axis transversely when we vary the parameter µ.

In case of a Turing, Hopf, or Turing-Hopf instability, ∂UF (0; 0) is invertible
and the equilibrium U ≡ 0 continues to a unique family of spatially homogeneous
equilibria U(µ) by the implicit function theorem. Shifting Ũ = U − U(µ), we may
assume that F (0;µ) = 0. Consider then the parameterized version of (4)

(8) d(k, λ;µ) = det
(

−Dk2 + ∂UF (0;µ) − λ
)

= 0.

The implicit function theorem gives us a unique family of curves λ∗(k;µ) which we
assume to cross the imaginary axis upon varying µ.

Hypothesis 2.8. [Transverse crossing] In cases [T], [H], and [TH], we assume
that F (0;µ) = 0 for µ close to zero and ∂µd(k∗, iω∗;µ)|µ=0 6= 0.
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If we denote by Reλmax(µ) the unique maximum of the real part of λ(k;µ),
then Hypothesis 2.8 ensures dλmax/dµ 6= 0 at µ = 0.

In case of a stationary homogeneous instability, the equilibrium U ≡ 0 can
typically not be uniquely continued for µ 6= 0. We then assume that varying the
parameter actually destroys the trivial equilibrium. Let U ∗ span the kernel of the
adjoint linearization of the kinetics with respect to some chosen scalar product (·, ·).

Hypothesis 2.9. We assume (U∗, ∂µF (0;µ)|µ=0) 6= 0.

Definition 2.10. [Classification of linear instabilities] Under Hypotheses 2.2,
2.5, 2.6, and 2.7 in case (TH), we say that the instability is linearly generically
unfolded if

• Hypothesis 2.8 is satisfied in cases (T), (H), and (TH).
• Hypothesis 2.9 is satisfied in case (O).

We remark here that the set of matricesD and functions F (U ;µ) with a linearly
generic unfolding of a marginal stability according to Definition 2.10 is open and
dense within the set of D and F which undergo a marginal instability, Hypothe-
sis 2.2. Figure 2 with a sketch of the dispersion relations summarizes the discussion
of this section.

λ
µ

k

µ

Re λ

k

µµ

 λ

k

µ

Re λ

k

µ

Im λ

k

Im λ

k

(O)

(H) (TH)

(T)

(TH)(H)

Figure 2. Dispersion relations between temporal eigenvalue λ and
wave number k in cases (O) –left– and (T) –right– in the top row.
Real and imaginary parts of λ in cases (H) –left– and (TH) –
right– at the bottom. In the oscillatory cases, the complex conjugate
critical curve is shown as a dashed line.

3. Stationary bifurcations and spatial dynamics

We consider stationary instabilities (O) or (T). We first rephrase the stationary
reaction-diffusion system as a dynamical system in spatial time x and reinterpret the
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linear instabilities in terms of the linearization of this dynamical system; Section 3.1.
We then state the center manifold reduction theorem, Section 3.2, which leads to a
low-dimensional ODE. Using normal form theory as in Section 3.3, we find universal
bifurcation equations. We analyze these bifurcation equations separately in case
(O), Section 3.4, and in case (T) of a Turing instability, Section 3.5.

3.1. Spatial dynamics. We look for time-independent solutions U(t, x) ≡
U(x), which are close to the trivial equilibrium U ≡ 0 in BC0

unif(R,R
N ). The

solution U(x) then solves the ordinary differential equation DUxx + F (U ;µ) = 0.
We rewrite this equation as a first-order system

ux = w(9)

wx = −D−1F (u;µ),

or, in more compact notation,

(10) ux = Au+ F(u;µ).

Here, u = (u,w)T belongs to the phase space Y := R2N , the linear part is de-
fined by A(u,w)T = (w,−D−1∂UF (0; 0)u)T , and the nonlinearity is given by
F((u,w)T ;µ) = (0,−D−1(F (u;µ) − ∂UF (0; 0)u))T . The linearization of (10) is
ux = Au.

The reflectional symmetry (x 7→ −x) of the original partial differential equa-
tion (2) translates into reversibility of the ordinary differential equation (10): if
u(x) is a solution, Ru(−x) is a solution, where R(u,w)T = (u,−w)T .

We decompose the spectrum specA according to

specA = Σs ∪ Σc ∪ Σu

where Σs ⊂ C− = {λ| Reλ < 0}, Σu ⊂ C+ = {λ| Reλ > 0}, and Σc ⊂ iR. The
corresponding generalized eigenspaces are denoted by Es, Ec, and Eu, respectively.
By reversibility, Es = REu and Ec = REc. In consequence, Ec is even-dimensional.
Let P s, P c, and P u denote the spectral projections on Es, Ec, and Eu, respectively,
along their relative spectral complement.

Lemma 2.11. Assume Hypotheses 2.2, 2.5, and 2.6. In case (O), dimEc = 2
with eigenvalue ν = 0 geometrically simple and algebraically double. We may choose
coordinates such that

A|Ec =

(

0 1
0 0

)

, R|Ec =

(

1 0
0 −1

)

.

In case (T), dimEc = 4 with eigenvalue ν = ik∗ geometrically simple and alge-
braically double. We may choose (complex) coordinates for uc ∈ Ec such that A,
R, and complex conjugation τ act according to

A|Ec =









ik∗ 1 0 0
0 ik∗ 0 0
0 0 −ik∗ 1
0 0 0 −ik∗









, R|Ec =









0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0









,

and

τ |Ec =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









.
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Proof. If ν = ik ∈ specA, we have det (−Dk2 + ∂UF (0; 0)) = 0. In addition, if
u = (u,w)T ∈ Ker (A − ik) is in the kernel, then w = iku and u ∈ Ker (−Dk2 +
∂UF (0; 0)). Hypothesis 2.5 implies that the geometric multiplicity of 0 (or ik∗)
is one in case (O) (or (T)). The algebraic multiplicity coincides with the order of
tangency of the dispersion relation λ∗(k) to the imaginary axis:

det (A− ν) = det

(

−ν 1
−D−1∂UF (0; 0) −ν

)

= det
(

ν2 +D−1∂UF (0; 0)
)

=
(

detD−1
)

∂2
ν

(

ν2D + ∂UF (0; 0)
)

6= 0,

in ν = 0 or ν = ik∗, respectively, from Hypothesis 2.6.
It remains to choose particular coordinates to obtain the representation as

claimed. First, since eigenvectors are of the form (u, νu)T , the action of R on
the eigenspace automatically takes the desired form. Next, in case (O), we choose
the principal vector (0, U0)

T with (U0, 0)T being the unique eigenvector, such that
R(0, U0)

T = −(0, U0)
T . Parameterizing uc = A(U0, 0)T +B(0, U0)

T with (A,B) ∈
R2 gives the desired action of A and R.

In case (T), let U0 ∈ RN span the kernel of k2
∗ − D−1∂UF (0; 0). Then the

vector (U0,±ik∗U0)
T spans the kernel of A∓ ik∗. A principal vector (u±, w±)T to

the eigenvalue ±ik∗ solves

−D−1∂UF (0; 0)u± + k2
∗u± = ±2ik∗U0

w± = U0 ± ik∗u±.

Note that Reu± ∈ Ker (k2
∗ − D−1∂UF (0; 0)) such that we may choose u± purely

imaginary with u− = −u+ = u+. Then (u+, w+)T = −R(u−, w−)T = (u−, w−)
T
.

Parameterizing the center space by

uc = A(U0, ik∗U0)
T +B(u+, w+)T + c.c.

gives the desired representation of A, R, and τ on A,B,A,B.

The choice of coordinates we use is the same as in [IP93]; see [MSW94] for a
slightly different choice.

Remark 2.12. Lemma 2.11 illustrates the relation between the dispersion rela-
tion and the eigenvalues in spatial dynamics in a particular example. In general, we
find a curve λj(k) near λ = 0 to each eigenvector Uj in the kernel of L0. The curves
are parameterized by k close to kj , where ikj is a purely imaginary eigenvalue in spa-
tial dynamics. The number of curves equals the dimension of the kernel and, at the
same time, gives the sum of the geometric multiplicities of eigenvalues ikj in spatial
dynamics on the imaginary axis; see Lemma 2.1. The order of tangency tj of the
curves λj(k) with the imaginary axis gives the algebraic multiplicity aj = tj+1 of the
eigenvalue ikj in spatial dynamics. Also, particular bases of the center eigenspace
can be constructed from the dispersion relation. The eigenvectors can be computed
directly from the kernel of −Dk2

∗ +∂UF (0; 0). The principal vectors can be obtained
from the dispersion relation using derivatives with respect to the wave-vector k: if
U0(k) denotes the vector in the kernel of −Dk2 + ∂UF (0; 0)− λ(k), with λ(k) from
Hypothesis 2.6, then −iU ′

0(k) = u+ is the first component of the principal vector to
the eigenvalue ik∗.

A similar observation holds in case of an oscillatory instability; see Lemma 2.30.
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3.2. Center manifolds. We show that small bounded solutions to (9) lie on
a locally invariant, low-dimensional manifold. Recall that a local flow on a manifold
M is a map Φ : U ⊂ R ×M → M, where U is an open neighborhood of {0}×M,
which satisfies the flow properties Φ(0, u) = u and, whenever {(s, u), (t,Φ(s, u))} ⊂
U , we have (t + s, u) ∈ U and Φ(t,Φ(s, u)) = Φ(t + s, u). A trajectory through a
point u0 of the local flow is the set {Φ(t, u0); t ∈ R with (t, u0) ∈ U}. Given a
differential equation, here the equation (9), we first introduce the notion of a center
manifold.

Definition 2.13. [Cm-Center manifold] A Cm-center manifold Wc ⊂ Y close
to an equilibrium u = 0 of a differential equation is an open Cm-manifold together
with a local flow Φc on Wc such that

• trajectories of Φc are solutions of the underlying differential equation;
• there is a δ > 0 such that for any solution u(x), x ∈ R, with |u(x)|Y < δ

for all x ∈ R, we have u(0) ∈ Wc.

Theorem 2.14. [Center manifolds] Assume (9) undergoes a stationary insta-
bility and let Ec denote the center eigenspace of A.

Then for any 0 < m < ∞, there is δ > 0 such that for all |µ| < δ there
exists a Cm-center manifold Wc ⊂ Y . The dependence of Wc as a manifold on
µ is Cm. For µ = 0, it is tangent to Ec in u = 0. Moreover, RWc = Wc and
RΦc(x, u) = Φc(−x,Ru), whenever one of both is defined.

There are various proofs of this theorem in the literature. We refer to [Shu87]
for a geometric proof via graph transform and to [Van89, VI91] for Perron’s
method, using variation-of-constant formulas. We exploit both methods in Chap-
ters 3 and 4, to construct invariant manifolds in a different, nonautonomous setting.

Since Wc is tangent to Ec at µ = 0, we may write

Wc = {(uc, ψ(uc;µ)) ; |uc|, |µ| ≤ δ′}
with δ′ small and ψ ∈ Cm(Ec ×Rp, Es ⊕Eu). The flow on Wc is generated by the
vector field of (9), restricted to Wc:

(11) uc
x = Acuc + P cF (uc + ψ(uc;µ);µ) =: gc(uc;µ),

where Ac := A|Ec , and the hyperbolic component of u is given as

(12) (P s + P u)u = ψ(uc;µ).

We call (11) the reduced equation. Taylor jets can be computed recursively from
the invariance condition (12), which gives

(13) ∂uψ(uc;µ)gc(uc;µ) = (P s + P u) (Aψ(uc) + F(uc + ψ(uc;µ);µ)) .

At each recursion step, we compute the `’th order Taylor monomials of ψ, making
use of the tangency ψ(0; 0) = 0, ∂uψ(0; 0) = 0.

In case of a stationary homogeneous instability, expanding the reduced vector
field leads to the following proposition.

Proposition 2.15. In case of a linearly generically unfolded instability of type
(O), the reduced vector field reads in appropriate coordinates

Ax = B(14)

Bx = (γ0, µ) + (γ1, µ)A+ γ2A
2 + γ3A

3 + R(A,B;µ)
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with amplitudes A,B ∈ R. Again, (·, ·) denotes a fixed scalar product in Rp.
The equation is invariant under reversibility (x 7→ −x,B 7→ −B); in particular,
R(A,−B;µ) = R(A,B;µ). The coefficients γ0, γ1 ∈ Rp and γ2, γ3 ∈ R can be
computed from (13). Generic unfolding implies γ0 6= 0. The corrections satisfy the
estimate

R(A,B;µ) = O
(

|µ|2 + |µ|A2 + |AB2| + |B|3 + (|A| + |B|)4
)

.

Small solutions of (14) yield small solutions of the full system (9) via the parame-
terization uc = A(U0, 0)T +B(0, U0)

T + O((|µ|+ |A|+ |B|)3)(0, U0)
T and lifting to

the manifold u = uc + ψ(uc;µ). Here, U0 6= 0 spans the kernel of ∂UF (0; 0). The
original variable u from (9) is recovered from u = AU0 +O(|µ| + |A|2).

Proof. First write uc = A(U0, 0)T +B̃(0, U0)
T , in the coordinates of Lemma 2.11.

We obtain

Ax = B̃ + R̃1(A, B̃;µ), B̃x = R̃2(A, B̃;µ)

and R̃j(A, B̃;µ) = O(|µ|+ (|µ|+ |A|+ |B̃|)2), j = 1, 2. From (13), we compute the
quadratic terms of the vector field by evaluating the nonlinearity on Ec and then
projecting with P c. We obtain

R̃1(A, B̃;µ) = O
(

|µ|(|A| + |B̃|) + |µ|2 + (|A| + |B̃|)2
)

,

R̃2(A, B̃;µ) = γ2A
2 + O

(

|µ| + (|A| + |B̃|)3
)

.

We next change coordinates to B = B̃ + R̃1(A, B̃;µ). Expanding the terms in the
equation for Bx then proves the proposition.

In case of a Turing instability, the analogue of Proposition 2.15 requires some
preparation. We concentrate on the linear part of the equation, first.

Proposition 2.16. Consider a linearly generically unfolded Turing instability
(T). After a linear change of coordinates, smoothly depending on µ, and µ-close
to the coordinates of Lemma 2.11 on Ec, we obtain the reduced equation for the
complex amplitudes A,B

Ax = ik∗A+B + ik1(µ)A+ O
(

(|A| + |B|)2
)

(15)

Bx = γ1(µ)A+ ik∗B + ik1(µ)B + O
(

(|A| + |B|)2
)

with γ1 and k1 smooth, real functions of µ, γ1(0) = k1(0) = 0 and γ′1(0) 6= 0.

Proof. Note that for µ = 0, the form of the equation is as described in
Lemma 2.11. By means of a smooth linear change of coordinates, the µ-dependent
linearization in uc = 0 of the reduced equation (11) on the center manifold can be
transformed to the above form, sometimes called the Arnol’d normal form of the
versal deformation; see [Arn83, ETBCI87] and Section 3.3. We have to show
that γ′1(0) 6= 0. First observe γ ′1(0) = −∂µ[det (A(µ) − ik∗)]µ=0, where

A(µ) =

(

0 1
−D−1∂UF (0;µ) 0

)

.

Then det (A(µ) − ik∗) = det (−Dk2
∗ + ∂UF (0;µ))/detD. By Hypothesis 2.8, the

derivative ∂µ[−Dk2
∗ +∂UF (0;µ)] does not vanish in µ = 0, which proves the propo-

sition.
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3.3. Normal forms. In this section, we review normal form theory as de-
veloped in [ETBCI87]. We start with a general differential equation in RM , M
arbitrary, with equilibrium u = 0 and linearization B in u = 0. We will later apply
the results to reduced equations on center manifolds, (11). Consider

(16) ux = Bu+ G(u;µ) ∈ R
M ,

with specB ⊂ iR and G(u;µ) = O((|µ|+ |u|)|u|), we ask for its ’simplest’ form after
a polynomial change of coordinates

u = v + Ψ(v;µ), Ψ(v;µ) = O ((|µ| + |v|)|v|) .
Theorem 2.17. [Normal form [ETBCI87]] For every 0 < m <∞, there exists

a smooth change of coordinates u = v + Ψ(v;µ), polynomial in v of degree m, such
that in the new variable v, equation (16) takes the normal form

(17) vx = Bv + N (v;µ) + R(v;µ),

with R(v;µ) = O(|v|m+1) a small remainder. The normal form part N is a poly-
nomial of degree m in v, with µ-dependent, smooth coefficients, and it commutes
with the flow to the adjoint linearized equation:

eB
∗τN (v;µ) = N (eB

∗τv;µ).

The adjoint B∗ is taken with respect to some chosen scalar product.
If (16) is reversible, then (17) is reversible. If (16) is equivariant with respect

to a compact subgroup of the orthogonal group O(M), then (17) is equivariant, too:
for all γ ∈ O(M), we have

N (γv;µ) = γN (v;µ), R(γv;µ) = γR(v;µ)

whenever the relations hold for B and G.

We outline the proof of the theorem since we will have to modify the con-
struction in Chapter 3 to find a time-dependent normal form for nonautonomous
systems.

The proof uses induction on m. We suppress µ-dependence throughout. Sup-
pose we have already transformed the equation into normal form up to order m−1:

ux = Bu+

m−1
∑

j=1

Nj(u) + Ñm(u) + R(u),

with Nj and Ñm being homogeneous polynomials in u of degree j and m, R(u) =
O(|u|m+1), and assume that Nj , 1 ≤ j ≤ m − 1, are in normal form. We set
u = v+ψ(v) with ψ a homogeneous polynomial of degree m in v. The equation for
v then becomes

vx = Bv +

m−1
∑

j=1

Nj(v) + Ñm(v) + Bψ(v) − ∂vψ(v)Bv + R̃(v),

where R̃(v) = O(|v|m+1). The new equation is in normal form up to order m, if,
and only if,

Nm(v) := Ñm(v) + Bψ(v) − ∂vψ(v)Bv
is in normal form.

We view Bψ(v)−∂vψ(v)Bv =: (ad mBψ)(v) as a linear operator on the space Pm

of homogeneous polynomials of degree m. We decompose Pm = Sm ⊕ Rg (ad mB)
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with a suitable complement Sm. By Fredholm’s alternative, we may choose Sm =
Ker ((ad mB)∗). The main observation in [ETBCI87] is that we may choose a scalar
product in Pm such that (ad mB)∗ = ad m(B∗). We may therefore choose ψ ∈ Pm

such that Nm ∈ Ker (ad m(B∗)). Now the differential equation ad m(B∗)Nm = 0

on Pm can be integrated to the equivariance condition eB
∗τN (v) −N (eB

∗τv) = 0.
For µ 6= 0, small, we solve the µ-dependent problem using Lyapunov-Schmidt
reduction. The necessary decomposition for the linear part is given by Pm =
Rg (ad mB) ⊕ Ker ((ad mB)∗).

The particular case of a Turing instability has been considered in [ETBCI87].

Proposition 2.18. [ETBCI87] Consider a linearly generically unfolded Tur-
ing instability (T). Fix 0 < m < ∞ arbitrary. Then, there exists a polynomial
change of coordinates such that the reduced vector field for the complex amplitudes
A,B ∈ C is given by

Ax = ik∗A+B + iAP1 + R1(18)

Bx = γ1(µ)A+ ik∗B + iBP1 +AP2 + R2

where Pj = Pj(I, J ;µ) are real polynomials in the real arguments I = |A|2 and J =

i(AB−AB), with smooth, µ-dependent coefficients and Pj(0, 0; 0) = 0, P2(0, 0;µ) =
0. The linear unfolding parameter γ1(µ) is a smooth, real-valued function with
γ′1(0) 6= 0. The remainder terms satisfy Rj = O(|A| + |B|)m+1.

Remark 2.19. If we set B̃ = B + iAP1, the system (18) transforms to

Ax = ik∗A+ B̃ + R̃1(19)

B̃x = γ1(µ)A+ ik∗B̃ +AP̃2 + R̃2,

with R̃j = O((|A| + |B̃|)m+1). In a corotating frame, Â = Ae−ik∗x, B̂ = B̃e−ik∗x,
we obtain

Âx = B̂ + R̂1(20)

B̂x = γ1(µ)Â+ ÂP̃2 + R̂2.

Here, P2 is, as before, a function of Î = |Â|2, Ĵ = i(ÂB̂ − ÂB̂). The remainder

terms R̂j(A,B;x) = O((|A|+ |B|)m+1) now are explicitly depending on spatial time
x, with period 2π/k∗.

3.4. Fold and cusp. We analyze the reduced equation in case of a stationary,
homogeneous instability. From Proposition 2.15, we have the reduced equation (14)
for the real amplitudes A,B, with expansion

Ax = B

Bx = (γ0, µ) + (γ1, µ)A+ γ2A
2 + γ3A

3 + R(A,B;µ).

We first analyze the generic case of the fold.

Hypothesis 2.20. [Fold] Consider a linearly generically unfolded homogeneous
stationary instability (O). Assume that γ2 > 0.

If γ2 < 0, we replace U by −U in the original reaction-diffusion system (2) and
find γ2 > 0 after the transformation.
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Proposition 2.21. Assume Hypothesis 2.20 with one-dimensional parameter
µ. Then for each µ small enough with µγ0 < 0, there exists a solution of the
reduced equation (14), q(x;µ) = (Q(x;µ), Q′(x;µ)), smoothly depending on µ, with
expansion

Q(x;µ) =

∣

∣

∣

∣

µγ0

γ2

∣

∣

∣

∣

1/2
(

1 − 3 sech2
(

|γ0γ2µ/4|1/4x
))

+ µQR(|µ|1/4x).

The correction QR and its derivatives are bounded. The solution is unique (up
to translations in x) as a nonconstant pulse solution, that is, with asymptotics
Q(x;µ) → |µγ0

γ2
|1/2 + O(|µ|).

The phase portrait of the reduced equation is depicted in Figure 3. In the
original reaction-diffusion system, we find a pulse solution, that is, an exponentially
localized, stationary pattern, with monotonically decreasing derivative, asymptotic
to the stable background state for x → ±∞.

B

A

B

A

µγ0 < 0µγ0 > 0

Figure 3. The reduced flow in case of a fold in the sub- and su-
percritical parameter range. The homoclinic in the right picture is
the particularly interesting localized pulse solution.

Proof. We rescale A = (−µγ0

γ2
)1/2Ã and x = (−γ0γ2µ)−1/4x̃ to obtain

(21) Ãx̃ =: B̃, B̃x̃ = −1 + Ã2 + R̃
where R̃ = O(|µ|1/2). The full equation is reversible with respect to (x̃ 7→ −x̃, B̃ 7→
−B̃). The truncated equation, with R̃ set to zero, possesses a unique homoclinic

solution q̃(x̃) = (Q̃, Q̃′)(x̃) with Q̃(x̃) = 1 − 3 sech2(x̃/
√

2). The homoclinic is
symmetric in x̃. We have to show persistence of the homoclinic for the full equa-
tion. First, the equilibrium p1 = (1, 0)T continues as a hyperbolic equilibrium to
p1(µ) = (1, 0)T + O(|µ|1/2) for (20). Denote by Wu(µ) its unstable manifold. On
any compact part, Wu(µ) and Wu(0) are O(|µ|1/2)-close in the C1-topology. In
particular, Wu(µ) intersects the reversibility line FixR = {(A, 0);A ∈ R} trans-
versely in a point ps(µ) = (−2+O(|µ|1/2), 0)T . Next, note that stable and unstable
manifolds of the equilibrium p1 are conjugate to each other by the reflection R:
Ws(µ) = RWu(µ), and therefore ps(µ) ∈ Ws(µ) as well. We have found the unique
µ-dependent homoclinic point as intersection of W s(µ) and Wu(µ) in FixR. Trans-
forming back to the original scaling proves the proposition.

Remark 2.22. The complete set of small bounded solutions of the reduced equa-
tion (14) consists of the homoclinic, the two equilibria, and a family of symmetric
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periodic orbits filling the region inside the homoclinic. All of them persist due to
reversibility. In fact, the phase portrait of the truncated equation can be read off
from the level lines of the Hamiltonian H(Ã, B̃) = 1

2 B̃
2 + Ã − 1

3 Ã
3. However,

the Hamiltonian structure of the truncated equation need not be preserved by the
higher-order terms, since the kinetics in the original reaction-diffusion system are
not assumed to be a gradient F (U) = ∇V (U) and possibly D 6= id. We therefore
exploited reversibility for persistence.

For the other sign of µ, there are no small bounded solutions, as can be seen
from the truncated equation Ã′′ = 1 + Ã2 and a flow-box argument.

There are no small heteroclinic orbits corresponding to standing interfaces in
the reaction-diffusion system.

We address the case of a cusp in the kinetics F , next. This codimension-two
bifurcation is of particular interest, since stable states may coexist.

Hypothesis 2.23. [Cusp] Consider a linearly generically unfolded homoge-
neous stationary instability (O) with two-dimensional parameter µ = (µ1, µ2). As-
sume that γ2 = 0 and γ3 = 1 in (14). Furthermore, assume that γ0 = (1, 0) and
γ1 = (0, 1).

The particular values of γ0, γ1, and γ3 can be achieved by rescaling the inde-
pendent variable U of the original reaction-diffusion system (2) and transforming
the parameter µ by a local diffeomorphism close to µ = 0.

The reduced, truncated equation with Hypothesis 2.23 reads

A′ = B, B′ = µ1 + µ2A+A3.

The equation possesses three equilibria A− < A0 < A+ within the cuspoidal region
µ2 < 0, µ2

1 < − 4
27µ

3
2; see Chapter 1, Figure 2.

The sign convention for γ3 actually implies that the unique equilibrium outside
the closure of the cuspoidal region is stable. Analyzing the reduced flow in this
region, we would find the equilibrium to be the unique, small bounded solution.
We therefore focus on the cuspoidal region. Along the boundaries of the cusp, we
find the fold as analyzed in Proposition 2.21. The standing pulses from Proposi-
tion 2.21 exist inside the cuspoidal region and are asymptotic to A− or A+. The
interesting, new phenomenon here are heteroclinic orbits, which occur along a curve
in parameter space. They mark the transition between the homoclinics asymptotic
to A− and A+, see Figure 4.

Proposition 2.24. There is a curve µ1 = h(µ2), µ2 < 0 inside the cuspoidal
region, with h(µ2) = O(µ2

2) such that for parameter values µ on this curve, there
exists a heteroclinic orbit of the reduced equation (14), unique up to translation and
reflection in x. It is given to leading order by q(x;µ) = (Q(x;µ), Q′(x;µ)) with
expansion

Q(x;µ) = |µ2|1/2 tanh
(

|µ2/2|1/2x
)

+ µ2QR

(

|µ2|1/2x
)

,

with QR and its derivatives bounded.

In the full reaction-diffusion system, the solution q(x;µ) from the proposition
represents a standing interface solution with expansion Q(x;µ)U0 + O(µ2), which
marks the parameter region of coexistence between two stable equilibria.

Again, we have sketched the “complete” bifurcation diagram, Figure 4.
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B BB

µ1 > 0 µ1 = 0 µ1 < 0

AAA

~

~

~

~~

~

~~

~

Figure 4. The phase portrait of the reduced flow in the param-
eter region with coexistence of two stable equilibria, depending on
µ̃1. The heteroclinic in the middle picture is the layer separating
coexisting stable equilibria.

Proof. The only region in parameter space which allows for coexistence of
equilibria is found within the scaling µ1 = µ̃1|µ2|3/2 with µ2 < 0 small and |µ̃1|
uniformly bounded in µ2. We scale the amplitude A = Ã|µ2|1/2, x = x̃|µ2|−1/2,
and obtain

(22) Ãx̃ =: B̃, B̃x̃ = µ̃1 − Ã+ Ã3 + R̃
with R̃ = O(|µ2|1/2). The truncated equation (R̃ = 0) possesses for µ̃1 = 0 a unique
heteroclinic q̃(x̃) connecting (±1, 0)T , up to translation and reversibility. It is given

explicitly through Ã(x̃) = tanh(x̃/
√

2). It remains to show that this heteroclinic

persists for the full equation and parameter values on a curve µ̃1 = h̃(|µ2|1/2),
µ2 < 0.

Denote by p−(µ̃1), p+(µ̃1) the equilibria in the truncated equation with p±(0) =
(±1, 0) and by Wu

−(µ̃1) and Ws
+(µ̃1) their unstable and stable manifolds, respec-

tively — which depend smoothly on µ̃1. Clearly,

q̃(0) ∈
⋃

µ̃1

Wu
−(µ̃1) ∩

⋃

µ̃1

Ws
+(µ̃1)

We claim that the intersection is transverse, that is,

Tq̃(0)





⋃

µ̃1

Wu
−(µ̃1)



+ Tq̃(0)





⋃

µ̃1

Ws
+(µ̃1)



 = R
2 × R

in the extended phase space (A,B; µ̃1) ∈ R2 × R; see Figure 5. As a transverse

A

B µ p-(µ1)

p+(µ1)

W-(µ1) W+(µ1)
su ~

~

~

~

~
1

Figure 5. Transverse intersection of stable and unstable mani-
folds

⋃

µ̃1
Wu

−(µ̃1) and
⋃

µ̃1
Ws

+(µ̃1) in the extended phase space.
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intersection, the heteroclinic would then persist, when switching on the µ2-small
perturbation R, for nearby values µ̃1 = O(|µ2|1/2).

Transversality can be checked through a Melnikov-type computation. We write
g(A,B) = (B̃, µ̃1 − Ã+ A3). Let ψ(x̃) be a bounded solution of the adjoint varia-
tional equation

(23) ψx̃(x̃) = −g′(q̃(x̃))ψ(x̃).

Since the intersection of stable and unstable manifolds is only one-dimensional, the
nontrivial solution ψ(x) is unique up to scalar multiples [Lin90]. Transverse inter-
section of stable and unstable manifolds in the extended phase space is equivalent
to the Melnikov condition

(24) M =

∫

R

(ψ(ξ), ∂µ̃1
g (q̃(ξ))) dξ 6= 0

in µ̃1 = 0; see [GH, Lin90]. The integral can be interpreted as the Lyapunov-
Schmidt projection of the perturbation on the kernel of the linearization [CH]

We have [Lin90]

(25) ψ(x̃) ⊥
(

Tq̃(x̃)Wu
−(0) + Tq̃(x̃)Ws

+(0)
)

.

Since q̃′(x̃) > 0, we have ψ(x̃) = (ψ1(x̃), ψ2(x̃)) with ψ2(x̃) > 0 for all x̃. Also
∂µ̃1

g(q̃(x̃)) = (0, 1)T and therefore
∫

R

(ψ(ξ), ∂µ̃1
g(q̃(ξ))) dξ > 0,

which proves M > 0 and the proposition.

Remark 2.25. As mentioned in Remark 2.22, the complete picture of small
bounded solutions to the reduced equation (14) can be obtained from the truncated
equation (22). In addition to layers, that is, heteroclinic orbits, we find homoclinic
solutions within the cuspoidal region of coexistence of homogeneous equilibria |µ1| <

2
3
√

3
|µ2|3/2+O(µ2

2), µ2 < 0. The region in phase space inside the homoclinic solution

is again filled with periodic trajectories. All these solutions are symmetric in x and
persist as mentioned in Remark 2.22.

Remark 2.26. Instead of restricting to stationary solutions of the reaction-
diffusion system (2), we could look more generally for travelling waves U(t, x) =
Q(x− ct), which solve

uξ = w, wξ = −D−1(F (u;µ) + cw)

with ξ = x− ct and µ, c small parameters.
Going through the previous reduction steps, we arrive at a reduced equation

Aξ = B, Bξ = (γ0, µ) + (γ1, µ)A+ γ2A
2 + γ3A

3 − γ̄cB + R(A,B;µ, c).

In analogy to (14), we have reversibility (ξ 7→ −ξ, B 7→ −B, c 7→ −c); in particular,
R(A,−B;µ,−c) = R(A,B;µ, c). The remainder satisfies the estimate

R(A,B;µ, c) = O((|µ| + |c|)2 + (|µ| + |c|)A2 + |AB2| + (|A| + |B|)4).
The coefficient γ̄ is always positive.

We find heteroclinic orbits of saddle-sink type, corresponding to fronts of a
PDE-stable equilibrium invading a PDE-unstable equilibrium. These fronts and
their stability have been analyzed in [KR96, RK98] in the similar case of a trans-
critical bifurcation. The minimal wave speed c scales with c = c̃|µ2|1/2. The layers
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found in c = 0 continue to saddle-saddle heteroclinics with a distinguished wave
speed c = c̃|µ2|1/2 inside the cuspoidal region. The heteroclinics represent a stable
state invading another stable state.

3.5. Turing instabilities. We first study the truncated normal form equa-
tion. We focus on the case of a weakly subcritical instability, which allows for coex-
istence of stable Turing patterns and the stable homogeneous equilibrium. We find
standing interfaces for certain parameter values and argue that, typically, standing
interfaces exist for open sets of parameter values.

A different kind of competition is observed in the supercritical regime, when the
dynamics are governed by the Ginzburg-Landau equation At = Axx + A − A|A|2.
Interaction between stationary periodic patterns

√

1 − k2
±eik±x on the left and on

the right half line may lead to front solutions [EG93] or diffusive repair [BK92,

CE92, GM98].
3.5.1. Fifth order normal form. From Remark 2.19, we have the expanded nor-

mal form, when redefining B̃ appropriately,

Ãx̃ = B̃ + ik∗Ã(26)

B̃x̃ = ik∗B̃ + γ1(µ)Ã+ γ2(µ)Ã|Ã|2

+γ3(µ)iÃ(ÃB̃ − ÃB̃) + γ4(µ)Ã|Ã|4 + R̃(Ã, B̃;µ),

with smooth, µ-dependent coefficients γj(µ). The remainder satisfies

R̃ = O



|ÃB̃2| +
5
∑

j=1

|B̃jÃ5−j | + (|Ã| + |B̃|)7


 .

3.5.2. Weakly subcritical instabilities. We assume γ2(0) = 0, an additional de-
generacy in the equation. In the typical case where γ ′1(0) and γ′2(0) are linearly
independent vectors, we may restrict to two parameters µ ∈ R2 and transform
parameters to γ1(µ) = −µ1, γ2(µ) = µ2. Furthermore, to allow for stable Turing
patterns in the subcritical region µ1 < 0, we assume γ4(0) > 0. We then rescale
to γ4(0) = 1. The relevant scaling, where we find nontrivial equilibria and periodic
orbits, is

A = |µ1|−1/4Ãeik∗x, x = |µ1|1/2x̃, µ2 = |µ1|1/2ν

and µ1 < 0. Note that we dropped tildes for convenience, although we do not
restore the first coordinates introduced on the center manifold! The scaling gives

Ax = B(27)

Bx = A+ νA|Ã|2 + γ3iA(AB −AB) +A|A|4 + R(A,B;µ1, ν, x)

and the remainder can be split into

R(A,B;µ1, ν, x) = |µ1|1/2R1(A,B;µ1, ν) + |µ1|m
′R2(A,B;µ1, ν, x),

for any fixed m′ > 0. Here, R1 corresponds to higher order terms in normal
form, whereas R2 corresponds to the remainder of arbitrary high order, which is
not in normal form. The x-dependence of R2 is rapidly oscillating with period
2π|µ1|1/2/k∗.
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3.5.3. Coexistence at the Maxwell point. We consider the truncated equation

Ax = B(28)

Bx = A+ νA|A|2 + γ3iA(AB −AB) +A|A|4.
Note that the subspace (A,B) ∈ R2 ⊂ C2 is flow-invariant for the flow to equa-
tion (28). The equation in this subspace is Hamiltonian with energy H(A,B) given
by

H(A,B) =
1

2
|B|2 − V (A), V (A) =

1

2
|A|2 +

ν

4
|A|4 +

1

6
|A|6.

Equilibria are given by A = 0 and A2
± = 1

2 (−ν ±
√
ν2 − 4). For ν > −2, there

is only one equilibrium. At ν = −2, a nontrivial equilibrium A = 1 appears.
For ν < −2, it splits into two positive equilibria A+ > A− > 0 (the negative
equilibria −A± are conjugate by complex rotation). At the Maxwell point, for

ν = νMaxw = −4/
√

3, A+ and 0 have equal energy and there exists a unique real
trajectory q(x) = (Q(x), Q′(x)) ∈ R2 with Q(x) → 0 for x → −∞ and Q(x) → A+

for x→ +∞; see Figure 6 for the phase portrait in the real subspace.

A

V(A) A

B

Figure 6. Potential V (A) and phase portrait at the Maxwell
point, where Turing patterns and trivial state have equal potential
V (A).

3.5.4. Transversality. The goal is to show persistence of the heteroclinic under
perturbations of type R1 in (27). We use transversality as invoked in Proposi-
tion 2.24. The equilibria p− = (0, 0) and p+ = (A+, 0) continue to equilibria
p−(ν) ≡ p− and p+(ν) for ν close to νMaxw. For the (real) four-dimensional dynam-
ics, p− is hyperbolic with two-dimensional unstable manifold Wu

−. The other equi-
librium, p+ possesses a three-dimensional center-stable manifold Wcs

+ . In fact, the
linearization at p+ is hyperbolic within the real subspace (which is flow-invariant)
and neutral in the remaining two directions.

Proposition 2.27. The heteroclinic q(x) for ν = νMaxw is transverse with
respect to the parameter ν:

(29) Tq̃(0)

(

⋃

ν

Wu
−

)

+ Tq̃(0)

(

⋃

ν

Wcs
+

)

= C
2 × R

in the extended phase space ((A,B), ν) ∈ C2 × R.

Proof. Note that the tangent space to the center manifold Tp+
Wc spans the

complement to the real subspace. Within the flow-invariant real subspace we have
transverse intersection of

⋃

ν Wu
− ∩ R

2 and
⋃

ν Ws
+; the proof is the same as in
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Proposition 2.24 for the interface in the case of a cusp. Therefore, the sums of
the tangent spaces in (29) is the sum of the real subspace and the direction of
the parameter ν from the transverse intersection within the real subspace, and the
purely imaginary subspace, from the tangent space to the center manifold W c at
p+, which proves the proposition.

Corollary 2.28. Consider equation (27), with R2 ≡ 0, that is, neglecting
non normal form terms. Then there is a unique value of ν = νMaxw(µ1) =

−4/
√

3 + O(|µ1|1/2), and a unique periodic orbit pk
+(x) = (P k

+, (P
k
+)′)(x) with

P k
+(x) = P 0

+(k)eikx for a certain P 0
+(k) = |A+|+O(k), with k = k(µ1) = O(|µ1|1/2),

such that there exists a heteroclinic orbit q(x) with q(x) → 0 for x → −∞, and
|q(x) − pk

+(x)| → 0 for x → +∞.

Proof. The stable and unstable manifolds
⋃

ν Wcs
+ and

⋃

ν Wu
− are Lipschitz con-

tinuously depending on the small perturbation R1 as smooth manifolds [Shu87,

KH95]. The transverse intersection therefore persists for an open interval of pa-
rameter values µ1.

3.5.5. Nonadiabatic effects. We close the discussion of the Turing instability
showing persistence of the interface under the perturbation R2 in (27), representing
non normal form terms, often referred to as nonadiabatic effects (see the discussion
below).

Proposition 2.29. For each µ1 small and all ϕ ∈ R, there exist unique values
(k, ν)(ϕ;µ1), such that for equation (27) including R2, there is a unique heteroclinic
q(x) for the parameter value ν with q(x) → 0 for x→ −∞ and |q(x)−pk

+(x+ϕ)| → 0

for x → +∞; see Corollary 2.28 for the definition of pk
+.

Proof. We consider R2 as a perturbation of the normal form system. Note
that dependence of R2 on x is singular. However, following [FS90], unstable and
center-stable manifolds still depend smoothly on the perturbation. The proof given
there for stable and unstable manifolds goes through also for center-stable manifolds
as considered here, considering suitable exponentially weighted spaces. Therefore,
transverse intersections persist. For the truncated equation, we had a transverse
intersection for fixed phase ϕ: ϕ = 0 corresponds to the real equilibrium in the
truncated equation. The transverse intersection selects unique values k and ν for
the intersection.

Summarizing, we have found stationary patterns of the reaction diffusion sys-
tem, which consist of stable Turing patterns in the region x → +∞ and of a stable
homogeneous state for x → −∞. We also showed that, allowing for small varia-
tions of the parameter ν, there exists a two-parameter family of such interfaces,
parameterized over translation in x and the phase ϕ of the Turing pattern relative
to the interface.

The main difference between the normal form and the full system is that in-
tersections do not necessarily occur along two-dimensional manifolds. The system
becomes nonautonomous with R2 and heteroclinic orbits for fixed ν are typically
isolated. Indeed, in the full reaction-diffusion system (9), we have an intersection
between an unstable manifold of dimension N and a center-stable manifold of di-
mension N + 1, with one-dimensional intersection along the heteroclinic. Invoking
transversality [AR], we find that generically this intersection is transverse and het-
eroclinics are isolated in phase space, but occur for open ranges in parameter space.
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For small amplitudes, this range of parameter values is invisible in the normal form

and we expect it to be exponentially small: δµ2 ≤ Const1 e−Const2/
√

|µ1|; see for
example [Gel97, Lom00] for results in this direction.

The phenomenon of standing interfaces between different spatial structures of
the PDE to occur for open ranges of parameter values is referred to as a locking
phenomenon. It does not occur in ‘generic’ reaction-diffusion systems between
homogeneous equilibria. There, standing interfaces are of codimension one, since
stable and unstable manifolds of stable equilibria are of equal dimension N .

A different interpretation of the phenomenon is as follows (see [Pom86] for
an early reference). The two spatial scales representing wavelengths of Turing
patterns and modulations along the heteroclinic are independent in normal form;
the temporal dynamics of the PDE quickly relaxes to dynamics involving only long-
wave modulations, represented for example by the heteroclinic; nonadiabatic effects
illustrate that this relaxation is not perfect and even in long-time dynamics, small
spatial scales are still relevant.

Leaving the range of locking, where standing interfaces exist, we expect trav-
elling waves to describe the competition between the trivial state and the sta-
tionary periodic pattern. Since in a comoving frame, the periodic patterns are
time-periodic, travelling waves cannot be found within the approach taken here.
Travelling waves of stable Turing-like structures, invading an unstable trivial state
have been found in [HS99]. The analysis there is concerned with the Couette-
Taylor problem and shows how stable Taylor vortices invade the unstable Couette
flow.

4. Oscillatory bifurcations and spatial dynamics

We consider oscillatory instabilities and look for time-periodic solutions. We
therefore rephrase the reaction-diffusion system as a dynamical system in spatial
time x, in a phase space of time-periodic functions with fixed period. We then rein-
terpret the linear instabilities in terms of the linearization of this dynamical system,
Section 4.1. We then state a center manifold reduction theorem in Section 4.2 for
this infinite-dimensional dynamical system. We conclude with an adaption of the
normal form algorithm and a discussion of the reduced dynamics in Section 4.3.
The patterns we find are spatially periodic wave trains and interfaces between wave
trains and spatially homogeneous equilibria.

4.1. Spatial dynamics on time-periodic functions. Considering spatial
dynamics as in (9), the trivial solution u ≡ 0 is hyperbolic and isolated at onset,
µ = 0, in case of an oscillatory instability (H) or (TH). The center manifold would
be trivial. Interesting solutions are time-periodic with temporal period close to the
period 2π/ω∗ predicted by the linear part. Here, ω∗ is the imaginary part of the
critical eigenvalue.

We study the first-order differential equation

ux = w(30)

wx = D−1 (ω∂tu− F (u;µ))

as an abstract differential equation on the phase space of 2π-time-periodic func-
tions (u,w)(x, ·). Note that solutions (u,w) to this differential equation which are
bounded on x ∈ R, uniformly in t, give us 2π/ω-periodic solutions U(t, x) = u(x, ωt)
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of the original reaction-diffusion system (2). We endow the phase space with the
topology (u,w) ∈ Y = H1/2(S1,RN ) × L2(S1,RN ). Functions in Y can be rep-
resented by their Fourier series (u,w)(t) =

∑

`∈Z
(u`, w`)ei`t. The norm on Y can

then be defined as

(31) |(u,w)|2Y =
∑

`∈Z

(

(|`| + 1)|u`|2 + |w`|2
)

.

Since we are interested in nonzero critical eigenvalues, Hypothesis 2.2, we may
assume F (0;µ) = 0 without loss of generality. The equation (30) then possesses a
trivial solution (u,w)(x, ·) ≡ 0 for µ close to zero . We may (formally) linearize (30)
around this equilibrium of the x-‘dynamics’ to obtain

ux = w(32)

wx = D−1 (ω∂tu− ∂UF (0;µ)u)

which we briefly write as ux = A(ω;µ)u. System (32) decouples into a family of
equations for the Fourier coefficients (u`, w`),

u`
x = w`(33)

w`
x = D−1

(

ωi`u` − ∂UF (0;µ)u`
)

.

Using this Fourier representation it is straightforward to verify that A(ω;µ) is a
closed operator on Y and satisfies the resolvent estimate

|(A(ω;µ) − ik)−1| ≤ C

|k| ,

with some constant C > 0 for all k ∈ R with |k| ≥ k0. The domain of definition
of A(ω;µ) is Y 1 = H1(S1,RN) × H1/2(S1,RN ), which is compactly embedded
into Y . Therefore, the spectrum of A(ω;µ) consists of isolated eigenvalues of finite
multiplicity. However, Re(specA(ω;µ)) is unbounded in R+ and R−, and the initial
value problem to (32) is ill-posed.

With the Fourier decomposition (33), we can (explicitly) split Y = Es⊕Ec⊕Eu

such that the subspaces Ej , j = s, c, and u are invariant under A0 := A(ω∗; 0)
and the spectrum decomposes into specA0|Es ⊂ C−, specA0|Eu ⊂ C+, and
specA0|Ec ⊂ iR. Denote again by P s, P c, and P u the spectral projections ac-
cording to this decomposition. Note that dimEc <∞, but dimEs = dimEu = ∞.

The abstract differential equation possesses several important symmetries. Re-
flectional symmetry x → −x of the original reaction-diffusion system induces re-
versibility. The equation is invariant under the action of R and spatial time-reversal
x→ −x, where the involution R acts according to R : Y → Y, (u,w) 7→ (u,−w). In
particular, the linearization anti-commutes, A0R = −RA0 on Y 1, and eigenspaces
are permuted, REc = Ec, REu = Es. In addition, there is the one-parameter
group SO(2) of rotations acting on Y via γθ : (u,w)(t) 7→ (u,w)(t − θ), with
θ ∈ R/2πZ ∼ SO(2). Since the original reaction-diffusion system was autonomous
and since we linearize along a temporal equilibrium state, the linearization com-
mutes with temporal time shift, γθA(ω;µ) = A(ω;µ)γθ, and eigenspaces are invari-
ant, γθE

j = Ej for j = s, c, and u.
Temporal time-shift γ and spatial reflection commute, such that γθR = Rγθ,

for all θ ∈ R/2πZ.

Lemma 2.30. Assume Hypotheses 2.2, 2.5, and 2.6 for an oscillatory instability
(H). We then have dimEc = 4 with eigenvalue ν = 0 geometrically double. In
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suitable, complex, coordinates (A,B,A,B), we have the following representations
for A0, R, and γθ:

A0|Ec =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









,

and

R(A,B,A,B) = (A,−B,A,−B)

γθ(A,B,A,B) = (eiθA, eiθB, e−iθA, e−iθB).

A solution U(t, x) of the original linearized reaction-diffusion system (3) is then
reconstructed from U(t, x) = A(x)eiω∗tU0 + c.c. with U0 the Hopf eigenvector of the
kinetics (∂UF (0; 0) − iω∗)U0 = 0.

The proof is similar to the proof of Lemma 2.11. Bounded solutions to (33)
only exist when ` = 1 or ` = −1. We then have to discuss bounded solutions to
this linear ordinary differential equation like in Lemma 2.11. We omit the details,
which are completely analogous to the proof of Lemma 2.11.

We conclude with a brief discussion of the Turing-Hopf instability, although we
do not pursue this case any further in later chapters. The case of a Turing-Hopf
instability (TH) is analyzed in [IM91], in the context of instabilities in fluid flows.
The dimension of the critical center eigenspace is dimEc = 4 with algebraically
simple eigenvalue ν = ik∗. Principal vectors are excluded since we fixed the tem-
poral period 2π/ω∗, and the frequency of the eigenfunction ω = Imλ depends on
the wave number k, with nonzero derivative cg, see Hypothesis 2.7. In suitable,

complex, coordinates A1, A2, A1, A2, we have the following representation for A0,
R, and γθ

A0|Ec =









ik∗ 0 0 0
0 −ik∗ 0 0
0 0 ik∗ 0
0 0 0 −ik∗









,

and

R(A1, A2, A1, A2) = (A2, A1, A2, A1),

γθ(A1, A2, A1, A2) = (eiθA1, e
iθA2, e

−iθA1, e
−iθA2).

A solution U(t, x) of the original linearized reaction-diffusion system (3) is then
reconstructed from A1(x)e

i(ω∗t+k∗x)U0 +A2(x)e
i(ω∗t−k∗x)U0 +c.c. Here, U0 denotes

the Hopf eigenvector, (−Dk2
∗ + ∂UF (0; 0) − iω∗)U0 = 0.

A nonsemisimple linear part — leading to a more complicated normal form
and various types of nonlinear defects — is recovered in a coordinate frame moving
with speed ±cg. However, typically the second eigenfunction A2 will then have a
frequency different from the frequency of the first mode and the center eigenspace
will again be complex two-dimensional. Only in the degenerate case of vanishing
group velocity, where Hypothesis 2.7 is violated, we can find an 8-dimensional center
eigenspace; see [RK00] for an analysis in this direction.

We also mention [HSS99], where defect-like solutions are studied for cou-
pled complex Ginzburg-Landau equations, which are shown to model counter-
propagating waves, as created in the Turing-Hopf instability.



4. OSCILLATORY BIFURCATIONS AND SPATIAL DYNAMICS 29

4.2. Center manifolds. Bounded solutions of the linearized problem are de-
scribed by a finite-dimensional ODE on Ec. The same is true for small bounded
solutions of the nonlinear problem (30), which we write in the abstract form

(34) ux = A(ω;µ)u+ F(u;µ),

with

A(ω;µ)(u,w)T =
(

w,D−1(ω∂tu− ∂UF (0;µ)u)
)T

F((u,w);µ) = (0,−D−1(F (u;µ) − ∂UF (0;µ)u))T .

The operator A is closed on Y with domain of definition Y 1. The nonlinearity
F maps Y 1 into Y 1 smoothly, since F : H1(S1) → H1/2(S1), u(·) 7→ F (u(·)) is
smooth from the embedding H1(S1) → C0(S1).

We say u(·) ∈ C0(J, Y ) is a solution on the interval J , if u(·) ∈ C0(int J, Y 1) ∩
C1(int J, Y ) and u(x) satisfies (34) for x ∈ int J . Recall the Definition 2.13 of a
center manifold.

Theorem 2.31. Assume that the reaction-diffusion system undergoes an oscil-
latory instability: a homogeneous Hopf (H), or a Turing-Hopf (TH) instability. Let
Ec denote the center eigenspace of A0.

Then, for any 0 < m < ∞, there is a δ > 0, such that there exists a Cm-
center manifold Wc with reduced flow Φc(x, u), for |µ| + |ω − ω∗| < δ. For µ = 0
and ω = ω∗, Wc is tangent to Ec in u = 0. The center manifold Wc and the
reduced flow Φc(·, ·) depend Cm on µ and ω. Center manifold and reduced flow
preserve the symmetry of the original equation. In particular, RW c = Wc, and
RΦc(x, u) = Φc(−x,Ru), whenever one of both is defined. Also, γθWc = Wc and
γθΦ

c(x, u) = Φc(x, γθu), for all θ ∈ R/2πZ.

The proof goes back, in spirit, to [Kir82]. The time-periodic case was first
treated in [IM91]. For a general reference, see [VI91].

Smooth dependence on ω, which appears in the leading order part of the equa-
tion, follows from results on center manifolds for quasi-linear equations [Mie88a].
In the particular case presented here, a simple rescaling provides an alternative

proof. Set x =
√

ω∗

ω x̃, w =
√

ω
ω∗
w̃, and F (u;µ) = ω

ω∗
F̃ (u;µ, ω). Then (30) be-

comes

ux̃ = w̃

w̃x̃ = D−1
(

ω∗∂tu− F̃ (u;µ, ω)
)

with center manifold W̃c and local flow Φ̃c, depending smoothly on ω. Going
back through the scalings shows that center manifold Wc and local flow Φc depend
smoothly on ω.

4.3. Normal forms, reduced equations, and coexistence. There is an
analogue of Proposition 2.16 for the unfolding of the linear part, here in the oscil-
latory case.

Proposition 2.32. Consider a linearly generically unfolded Hopf (H) instabil-
ity. In smooth coordinates, (µ, ω)-close to the coordinates of Lemma 2.30 on Ec,
we obtain the reduced equation for the complex amplitudes A,B

Ax = B + O
(

(|A| + |B|)2
)

(35)

Bx = γ1(µ, ω)A+ O
(

(|A| + |B|)2
)
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with γ1(µ, ω) ∈ C, γ1(0, ω∗) = 0, Re ∂µγ1(0, ω∗) 6= 0, and Im ∂ωγ1(0, ω∗) 6= 0.

Proof. The linear part is automatically in the described normal form, due
to equivariance and reversibility, up to a rescaling of B. The form of γ1 is a
consequence of the genericity of the unfolding, Definition 2.10.

The next step is a nonlinear normal form. The nonsemisimple part in the Hopf
case is the same as for the Turing instability. The action of the continuous normal
form symmetry group generated by the semi-simple part in the Turing instability
is the same as the action of the time-shift symmetry γθ. The only difference lies
in the action of reversibility, without complex conjugation. From [ETBCI87] we
easily obtain, restricting to reversible polynomials, the following normal form:

Ax = B + iA(AB −BA)P1

(

|A|2, (AB − BA)2;µ, ω
)

(36)

Bx = γ1(µ, ω)A+AP2

(

|A|2, (AB −BA)2;µ, ω
)

+

+ iB(AB −BA)P1

(

|A|2, (AB −BA)2;µ, ω
)

with P1 and P2 being complex polynomials in their arguments, which vanish in the
origin Pj(0, 0;µ, ω) = 0, j = 1, 2.

We write γ1 = −µ1+iω̂ and ∂1P2(0, 0, 0, ω∗) = γ2. We then scale A = |µ1|1/2Ã,

x = |µ1|−1/2x̃, B = |µ1|B̃, and ω̂ = |µ1|ω̃ and arrive at

Ãx̃ = B̃ + O
(

|µ1|1/2
)

(37)

B̃x̃ = (±1 + iω̃)Ã+ γ2Ã|Ã|2 + O
(

|µ1|1/2
)

If γ2 6= 0, the truncated equation is the steady-state equation for the cubic complex
Ginzburg-Landau equation

(38) Ãt̃ = (1 + β1)Ax̃x̃ + (±1 + iβ2)Ã+ (±1 + iβ3)Ã|Ã|2,
with real coefficients βj , after rescaling Ã.

Besides periodic solutions of the form Ã(x̃) = aeikx̃, there may exist many
localized solutions, asymptotic to zero or to periodic solutions. Countably many
localized solutions can be constructed close to the degenerate case of real coefficients
β1 = β2 = β3 = 0; see [Doe96]. Some of the localized solutions can be computed
explicitly, see [vSH92].

If the complex cubic coefficient vanishes, γ2 = 0 at µ = 0, we assume that this
degeneracy is unfolded by the parameters µ2 and µ3 and set ∂1P2(0, 0;µ, ω∗) =
µ2 + iµ3, possibly transforming parameter space µ, ω by a local diffeomorphism.
We then scale µ2 = µ̃2|µ1|1/2, µ3 = µ̃3|µ1|1/2, A = |µ1|1/4Ã, x = |µ1|−1/2x̃,

B = |µ1|3/4B̃, and ω̂ = |µ1|ω̃ and arrive at

Ãx̃ = B̃ + O
(

|µ1|1/2
)

(39)

B̃x̃ = (±1 + iω̃)Ã+ (µ̃2 + iµ̃3)Ã|Ã|2 + γ3Ã|Ã|4 + O
(

|µ1|1/2
)

with γ3 = ∂2
1P2 in zero. This is the cubic-quintic Ginzburg-Landau equation,

which for certain parameter values may possess stable standing pulses and fronts,
see [vSH92, KS98]. In particular, in the weakly subcritical regime, there may exist

standing fronts between the stable trivial state and patterns of the form Ã(x̃) =
aeikx̃ .
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We illustrate coexistence in oscillatory instabilities starting from the real cubic-
quintic Ginzburg-Landau equation, Section 3.5, equation (28) with γ2 = 0:

(40) Axx = (1 + iω)A+ (ν + iγ1)A|A|2 + (1 + iγ2)A|A|4,
where γ1 = γ2 = ω = 0. For γ1 = γ2 = 0, we showed in Section 3.5 that, at
the Maxwell point ν = −4/

√
3, there exists a heteroclinic orbit connecting A = 0

to A = A+, with A2
+ = (−ν +

√
ν2 − 4)/2 = 2

√
3. The heteroclinic is trans-

verse as a heteroclinic to {eiϕA+; ϕ ∈ R} in the extended phase space with the
parameter ν added. Varying ω, the transverse intersection persists and we find
transverse heteroclinic orbits to periodic orbits Aeik(ω)x near A = A+, k = 0. Since
the perturbation iωA gives the only contribution to the vector field in the imag-
inary subspace, with definite sign, sgn (ωA) = sgn (ω), the selected wavenumber
changes nontrivially with ω, dk

dω 6= 0. In other words, given k close to zero, we find

(ω∗, ν∗)(k) and a unique heteroclinic connecting 0 to a(k)eikx for values of the pa-
rameters (ω, ν) = (ω∗, ν∗)(k) and γ1 = γ2 = 0. Adding the perturbation γ1, γ2 6= 0,
the family of periodic orbits aeikx persists as a normally hyperbolic invariant man-
ifold [Fen79]. Transverse heteroclinics now correspond to transverse intersections
between the unstable manifold of the origin and any fixed strong stable fiber of
the normally hyperbolic invariant manifold, close to the real subspace, adjusting
the parameters ν and ω appropriately. Periodic orbits of the form aeikx satisfy the
algebraic relations

(41) ω = −γ1a
2 − γ2a

4, k2 = −1− νa2 − a4.

For a ≤ A+ = 2
√

3, k2 is positive and ω = −γ1a
2 − γ2a

4 and dω
da = 2γ12

√
3 −

4γ2(2
√

3)3 typically carry definite signs. Since dk2

da |a=2
√

3 < 0, the group velocity
dω
dk = dω

da · da
dk can take both positive and negative signs, depending precisely upon the

sign of k. As a consequence of this discussion, we conclude that the change of the
orbit aeikx with ω is small. We may therefore adjust ω and ν to find a connecting
orbit from zero to any periodic orbit with k ∼ 0 small and group velocity dω

dk > 0:

Proposition 2.33. Consider a linearly generically unfolded Hopf bifurcation,
with degenerate cubic coefficients in the truncated quintic normal form; see (40),

with γ1, γ2 close to zero, and ν close to −4/
√

3. Then for all waves A+eikx with

positive group velocity cg = dω
dk determined from (41), there exists ν close to −4/

√
3

such that there exists a heteroclinic solution to (40), asymptotic to zero for x → −∞
and to A+eikx for x → +∞. The solutions are transverse in the extended phase
space and persist as a branch of solutions for the full reaction-diffusion system (30).

Note that the persistence under higher order perturbations which are not in
normal form is less subtle than in the case of a Turing instability since the contin-
uous SO(2)-symmetry is induced by temporal time-shift and is present in the full
system, not only in the normal form.

Note however, that we have to adjust the parameter ν in the equation to
find a standing interface — just like in the case of an interface between spatially
homogeneous states in the cusp bifurcation.

The case of negative group velocity is simpler. It is not difficult to verify
that periodic orbits with negative group velocity are stable inside the Fenichel slow
manifold. Heteroclinic orbits therefore occur for intervals of parameter values ν.

The above case is a codimension three situation since both real, and imaginary
part of the cubic coefficient vanish simultaneously. The transition between sub- and
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supercritical bifurcations, where only the real part of the cubic coefficient crosses
zero does not seem to be well understood. We refer to [EI89] for a partial discussion
of this problem. No results on fronts and pulses seem to exist for this case, which
leads to a small perturbation of (37) with γ2 purely imaginary.

Remark 2.34. In a slightly more general spirit, we might have tried to find
time-periodic solutions in a coordinate system ξ = x− ct, moving with speed c; see
Remark 2.26 for the case of a stationary instability. We recover the wave speed c
as a parameter in the linear part of the reduced equation. Similarly to the case of a
stationary instability, we find a new term −γcB in the equation for Bξ with Re γ >
0. In particular, the heteroclinic orbits representing the coexistence patterns that
we described above, derived as perturbations from the real cubic-quintic Ginzburg-
Landau equation, are transverse intersections in the parameter c. Therefore, in
addition to the codimension-one surface of standing coexistence interfaces, we find
moving interfaces, where either of the stable states, oscillatory or homogeneous,
may invade the other.



CHAPTER 3

Stationary radially symmetric patterns

We extend the general reduction procedure from Chapter 2 to higher space di-
mensions, restricting to radially symmetric solutions. First, the problem is formu-
lated as a nonautonomous dynamical system, and the linearized differential equa-
tion is analyzed in terms of exponential dichotomies in Section 1. Section 2 contains
the main reduction results. We first prove existence of an r-dependent, dynami-
cally invariant center manifold in Section 2.1. We then enlarge this manifold in the
far-field, r large, to find an asymptotic center manifold with r-independent tangent
space. Within this enlarged manifold, we then proceed in Section 3 to compute
Taylor jets of the reduced vector field and derive a normal form algorithm, taking
care of curvature terms, represented by dependence of the vector field on powers of
1/r. The main results are presented in Section 4. First, the far-field equations are
scaled in a long-wavelength expansion and universal, reduced equations are derived,
Section 4.1. We then find bounded solutions in these universal equations as trans-
verse heteroclinic orbits, Section 4.2. Section 4.3 shows how to construct solutions
of the full reaction-diffusion system from the universal, reduced far-field equations.
In particular, a rigorous matching-procedure with the center of the pattern gives
us existence of branches of solutions, bifurcating from the origin; Theorems 3.18,
3.19, and 3.20.

1. Classification and radial dynamics

We study instabilities in higher space dimensions, focusing on radially symmet-
ric solutions. Consider therefore

(42) Ut = D4xU + F (U ;µ),

with U ∈ RN , µ ∈ Rp, and x = (x1, . . . , xn) ∈ Rn. We assume existence of a trivial,
spatially homogeneous equilibrium F (0; 0) = 0. The linearization becomes

(43) Vt = D4xV + ∂UF (0; 0)V.

As in Chapter 2, Section 1, Fourier transformation leads to a classification
of possible instabilities: critical wave vectors are of the form ei((k∗,x)+ω∗t)U0. We
obtain the four cases (O), (T), (H), and (TH), as in Definition 2.3. Formally, when
referring to an instability of type (T), say, in higher space dimension, we restrict
equation (42) to one-dimensional solutions, which do not depend on x2, . . . , xn, and
we then apply the definitions from Chapter 2, Section 1.

Note however that due to rotational invariance of equation (43), whenever
ei((k∗,x)+ω∗t)U0 is a solution to (43), ei((k,x)+ω∗t)U0 is a solution, too, whenever |k| =
|k∗|. In the particular case of a Turing bifurcation, the kernel of the linearization is
infinite-dimensional at onset of instability, leading to notorious complications even
in formal derivations of amplitude equations [NW69, Schn95].

33
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In this chapter, we only treat the cases (O) and (T). We consider generically
unfolded stationary instabilities, Definition 2.10, and look for small, bounded, ra-
dially symmetric solutions. In polar coordinates, we may rewrite the stationary
reaction-diffusion equation D4xU + F (U ;µ) = 0 as a nonautonomous, singular,
ordinary differential equation in the radius r,

ur = w(44)

wr = −n− 1

r
w −D−1F (u;µ),

on the phase space Y = R2N . Note that the equation is defined for 0 < r <∞.
We will show that there are well-defined limiting equations in r = 0 and in

r = ∞. Formally, the equation is well-defined on r < 0 as well. Moreover, we
may reflect (u,w, r) 7→ (u,−w,−r), which leaves the equation invariant. In a
neighborhood of r = ∞, this reversibility operation imposes severe restrictions on
the possible dynamics, as we will see in Section 3. In this sense, reversibility is
restored.

In a more compact notation, we consider

(45) ur = A(r)u+ F(u;µ),

where

A(r) =

(

0 1
−D−1∂UF (0; 0) −n−1

r

)

,

and

F(u;µ) =

(

0
−D−1(F (u;µ) − ∂UF (0; 0)u)

)

.

The linearization about the trivial solution (u,w)(r) ≡ 0 is

vr = w(46)

wr = −n− 1

r
w −D−1∂UF (0; 0)v,

or, vr = A(r)v. For r close to zero, we consider a slow spatial time variable
τ = log r, which removes the singular behavior in r = 0:

uτ = eτw(47)

wτ = −(n− 1)w − eτD−1F (u;µ),

with linearization

vτ = eτw(48)

wτ = −(n− 1)w − eτD−1∂UF (0; 0)v.

Both equations (46) and (47) can be rewritten as autonomous equations in an
extended phase space, adding an equation for spatial time. For r → ∞, we rewrite

u′ = w(49)

w′ = −(n− 1)αw −D−1F (u;µ)

α′ = −α2
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where ′ denotes differentiation with respect to r = 1/α. For r → 0, the following
form is more convenient:

u̇ = rw(50)

ẇ = −(n− 1)w − rD−1F (u;µ)

ṙ = r,

where ˙ now denotes differentiation with respect to τ .
The subspace r = 0 in (50) is a flow-invariant subspace with linear flow

u̇ = 0(51)

ẇ = −(n− 1)w,

containing an N -dimensional normally hyperbolic subspace of equilibria w = 0.
The subspace α = 0, corresponding to r = ∞, is flow-invariant for (49). Within

this subspace, we recover the one-dimensional spatial dynamics from Chapter 2,

u′ = w(52)

w′ = −D−1F (u;µ),

with linearization

v′ = w(53)

w′ = −∂UF (0; 0)v,

which we write as v′ = A(∞)v.
For the asymptotic equations of the linearized problem, we can define a hyper-

bolic splitting as follows. Denote by Ecu
− = {(u,w);w = 0} and Es

− = {(u,w);u =
0} the flow-invariant linear center-unstable and stable subspaces for (51). Similarly
let Es

+, Ec
+, and Eu

+ denote center, stable, and unstable subspaces of the linear equa-
tion (53). Note that Ec

+ is the center space we considered in the one-dimensional
problem in Chapter 2, Lemma 2.11.

For the nonautonomous equation, these subspaces continue to r-dependent sub-
spaces, which are characterized by asymptotic exponential growth of solutions start-
ing within these subspaces.

Lemma 3.1. The linearized equation (48) possesses an exponential dichotomy
on τ ≤ 0, that is, there are linear evolution operators Φcu

− (τ, σ), Φs
−(τ, σ), on the

phase space Y = R2N , and a constant C > 0, such that the following holds. The
trajectories Φj

−(·, σ)u are a solution of (48) for all u ∈ Y and σ fixed, and

(i) Φj
−(τ, σ)Φj

−(σ, ρ) = Φj
−(τ, ρ), for all τ ≤ σ ≤ ρ ≤ 0 if j = cu, and for all

ρ ≤ σ ≤ τ ≤ 0 if j = s;
(ii) |Φcu

− (τ, σ)| ≤ C, for τ ≤ σ ≤ 0;

(iii) |Φs
−(τ, σ)| ≤ Ce−|τ−σ|, for σ ≤ τ ≤ 0;

(iv) Φs
−(τ, τ) + Φcu

− (τ, τ) = id, for all τ ≤ 0.

Equation (46) possesses an exponential dichotomy on r ≥ 1. More precisely, there
are evolution operators Φu

+(r, s), Φc
+(r, s), Φs

+(r, s), defined on the phase space Y =

R2N , and constants ηu
+, η

s
+ > 0, and for any ηc

+ > 0, there is a constant C > 0

such that the following holds. The trajectories Φj
+(·, s)u are a solution of (46) for

all u ∈ Y and s fixed, and

(i) Φj
+(r, s)Φj

+(s, s′) = Φj
+(r, s′), for all 1 ≤ r ≤ s ≤ s′, j = u, and 1 ≤ s′ ≤

s ≤ r, j = s, and 0 ≤ s′, s, r, j = c;
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(ii) |Φu
+(r, s)| ≤ Ce−ηu

+|r−s|, for 1 ≤ r ≤ s;

(iii) |Φs
+(r, s)| ≤ Ce−ηs

+|r−s|, for 1 ≤ s ≤ r;

(iv) |Φc
+(r, s)| ≤ Ceηc

+|r−s|, for 1 ≤ s, r;
(v) Φs

+(r, r) + Φc
+(r, r) + Φu

+(r, r) = id, for all r ≥ 1.

We refer to [Cop78, San93, PSS97] for a discussion of exponential dichoto-
mies, including proofs of the above lemma.

The operators Φj
±(s, s) are projections for any fixed s, since (Φj

±(s, s))2 =

Φj
±(s, s) from (i). We denote by Ej

±(s) := Rg (Φj
±(s, s)) the ranges, which are

time-dependent linear subspaces.

2. Center manifolds

2.1. The nonautonomous center manifold W̃c. In the spirit of Chapter 2,
we construct a locally invariant manifold for the dynamical system (49), (50), in
the extended phase space. The manifold we construct contains all small solutions,
bounded for all spatial times r ≥ 0. Roughly speaking, it is obtained as the inter-
section of the set of solutions to (50), bounded for r → 0, and the set of solutions
to (49), bounded for r → ∞. Since the equation is nonautonomous, this manifold
depends on r.

As we already pointed out, Ec
+ denotes the generalized center eigenspace of

the (asymptotic) one-dimensional problem, v′ = A(∞)v, obtained at r = +∞. In
particular, A(∞) anti-commutes with the involution R : (u,w) 7→ (u,−w): the
asymptotic equation is reversible. As a consequence, dimEc

+ is even.
Notation: We write E⊕F ≤ Y for sums of subspaces within the phase space Y ,

and we write E×J ⊂ Y ×R+ for product subsets of the extended phase space. We
denote locally invariant manifolds with the letters W̃ ⊂ Y × R+, with superscripts
u, c, s indicating exponential growth or decay of solutions inside the manifold, and
with possible subscripts +,− indicating whether the manifold is contained in r > 1
or r < 1, respectively. We also write W(r) for time slices W̃ ∩ (Y ×{r = r0}), that
is, we drop the tilde when we refer to the manifold as a subset of Y only.

We adapt the definition of a local center manifold to the nonautonomous setting
used here.

Definition 3.2. [Nonautonomous center manifold] A Cm-center manifold W̃c

for the radial dynamics (45), close to the origin {(u, r);u = 0, r ∈ R+} in the ex-
tended phase space Y ×R+ of (50), given as a fiber-bundle over time r,

⋃

r>0 Wc(r)×
{r} ⊂ Y × R+, is an open Cm-manifold together with a local flow Φ̃c on W̃c such
that

• trajectories of Φ̃c on W̃c are solutions of (50);
• there is a δ > 0 such that for any solution u(r), r ∈ R+ of (44) with
|u(r)| < δ for all r ∈ R+, we have u(r) ∈ Wc(r) for all r ∈ R+ and

(u(r), r), r ∈ R+ is a trajectory of the flow Φ̃c.

Theorem 3.3. Assume Hypotheses 2.5 and 2.8. For each 0 < m < ∞ and
each µ in a small neighborhood of zero, there exists a Cm-center manifold W̃c for
the radial dynamics (44), of dimension dimEc

+/2 + 1. The manifold depends Cm

on the parameter µ.

The proof will occupy the remainder of this section. We first outline the proof.
A modification of the nonlinearity allows us to globalize the problem and consider
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all, not only small, bounded solutions. We then construct two manifolds, which
contain solutions bounded for r > 1 and for r < 1, respectively. The first manifold,
W̃cs

+ , is a global center-stable manifold of equation (49), which contains all solutions

with mild exponential growth as r → ∞. The other manifold, W̃cu
− , is a global

center-unstable manifold of equation (49), which contains all solutions with mild

exponential growth as τ = log r → −∞. We show that solutions within W̃cu
− are

actually bounded as τ → −∞. The intersection, W̃cs
+ ∩ W̃cu

− =: W̃c
glob, restricted

to a neighborhood of u = 0, gives us the desired, locally invariant center manifold;
see Figure 1.

u

r=0
1/r=0

v

r

W cu
- W cs

+

W c

W c

~

~
~

~

Es
-

Ecu
-

Eu
+

Ecs
+

Figure 1. A sketch of the invariant manifolds, needed for the
construction of W̃c, in the extended phase space.

We first modify F . Let χ : R → R be a smooth cut-off function with χ(s) = 1
for s ≤ 1, χ(s) = 0 for s ≥ 2, and χ′ < 0 on (1, 2). Define

Fmod(u;µ) := χ

( |u|2 + |µ|2
δ′

)

(F (u;µ) − ∂UF (0; 0)u),

the δ′-dependent modified nonlinearity. Note that the Lipschitz constant of the
modified nonlinearity Fmod(·;µ) tends to zero

LipFmod(·;µ) → 0, for δ′ → 0,

uniformly in µ.
We then consider the system (45), with Fmod((u,w);µ) := (0, D−1Fmod(u;µ))

(54) ur = A(r)u+ Fmod(u;µ).

We start constructing W̃cs
+ . Consider (54) in the extended phase space

(55) u′ = A(1/α)u+ Fmod(u;µ), α′ = −α2.

Note that, by definition, A(1/α) is smooth in α at α = 0.

Proposition 3.4. For µ in a small neighborhood of zero, equation (55) pos-

sesses a flow-invariant center-stable manifold W̃cs
+ , that contains all solutions which

are bounded as r → ∞. The manifold is Cm and depends Cm on µ. More-
over, W̃cs

+ is tangent to (Ec
+ ⊕ Es

+) × R at u = 0, α = 0, µ = 0 in the extended

phase space R2N × R. For any α0 < ∞, R2N × {|α| ≤ α0} ∩ W̃cs
+ is δ′-close to

(Ec
+ ⊕Es

+) × {|α| ≤ α0} in the C1-topology.
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Proof. We construct the center-stable manifold to (55) near α = 0, u = 0.
Modifying the α-dependent nonlinearities by multiplying them with χ(|α|/δ′), we
obtain a new modified equation which is a small perturbation of the linearization
in u = 0, α = 0. We can apply results in [Van89] to find a global center-stable

manifold W̃cs
+,glob. Note that the modification of the α-terms only appears for

α > δ′, such that W̃cs
+,glob ∩ {α < δ′} is forward invariant under the flow to (55).

Transporting this forward invariant manifold backwards with the flow to (55) gives
the desired invariant center-stable manifold.

The next step is the construction of W̃cu
− . We consider the modified version

of (50)

(56) u̇ = rA(r)u + rFmod(u;µ), ṙ = r.

Proposition 3.5. For all µ, not necessarily small, there exists a unique C∞-
center-unstable manifold W̃cu

− ⊂ R2N ×R+, consisting of all solutions to (56) which

are bounded as τ → −∞. The manifold depends C∞ on µ. The manifold W̃cu
− is

δ′-close to Ẽcu
− = (Ecu

− × {0}) ∪ ⋃r≤1E
cu
− (r) × {r} on r ≤ 1 in the C1-topology,

and is tangent to Ẽcu
− in u = 0, r = 0 and µ = 0. Moreover, W̃cu

− is a C∞-

fiber bundle W̃cu
− =

⋃

u0∈RN W̃u
−(u0), where W̃u

−(u0) are the C∞-, one-dimensional
strong unstable manifolds of the equilibria u = u0, w = 0, r = 0, which consist of a
unique single trajectory ((u,w)(τ), eτ ) with (u,w)(τ)−(u0, 0) = O(eτ ) as τ → −∞.

Proof. The linearization at an equilibrium u = u0, w = 0, r = 0 is

u̇ = 0, ẇ = −(n− 1)w − rD−1Fmod(u0; 0), ṙ = r

with one-dimensional strong unstable direction and eigenvalue one. The strong
unstable manifold, W̃u

−(u0) is a C∞-manifold, which depends smoothly on the base

point u0. The union of the W̃u
−(u0) form a smooth fiber bundle which is the (unique)

center-unstable manifold. The construction is smoothly depending on µ.

Next, we define W̃c
glob = W̃cu

− ∩ W̃cs
+ , the global center manifold. As an inter-

section of invariant manifolds, W̃c
glob is invariant. By construction, W̃c

glob contains

all bounded solutions of (44). We show that the intersection is a smooth manifold
of dimension dimEc

+/2.

Proposition 3.6. For all µ in a small neighborhood of zero, the set W̃c
glob =

W̃cu
− ∩ W̃cs

+ is a Cm-manifold of dimension dimEc
+/2, depending Cm on µ.

Proof. We have to show that (Wc
glob(r0), r0) = W̃c

glob∩(Y ×{r = r0}) is a smooth
manifold, which depends smoothly on r0. We therefore show that the fiber-wise
intersection Wcu

− (r0) ∩ Wcs
+ (r0) is transverse in u = 0. Since both manifolds are

δ′-close in the Cm-topology to their tangent space in u = 0, see Propositions 3.4
and 3.5, we only have to show that their tangent spaces intersect transversely for
all r0 > 0. In other words, we have to show that Ecu

− (r0) and Ec
+(r0)⊕Es

+(r0) (see
Lemma 3.1 for their definition) intersect transversely along Ec(r0), a linear sub-
space of dimension dimEc

+/2. The linear spaces are transported by the linearized

equation (46). Note first that, if E ≤ RN is invariant under D−1∂UF (0; 0), then
E × E ≤ RN × RN is invariant under the evolution of (46). We may therefore
restrict to showing transversality in flow-invariant subspaces, where D−1∂UF (0; 0)
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can be assumed to be in Jordan normal form. Consider the system for a single
Jordan block

(57) vr = w, wr = −n− 1

r
w −N j

ν v,

with (v, w) ∈ R2j = E × E and N j
ν = νid + N j and N j the standard nilpotent

Jordan block of dimension j in E. We claim that within E ×E the intersection of
Ecu

− (r0) and Ecs
+ (r0) is transverse. Let first ν ∈ R−. Then E×E ≤ Ec

+ ≤ Ecs
+ , which

implies transversality. Also, within E × E, we get Ec(r0) = Ecu
− (r0) ∩ Ecs

+ (r0) =
Ecu

− (r0), which is j-dimensional, half the dimension of Ec
+ ∩ (E ×E).

Let ν 6∈ R−, next. Then (57) in r = ∞ is hyperbolic and Ec
+ is trivial.

Thereby, Ec(r0) ∩ (E × E) = {0} and dimEcs
+ (r0) = dimEs

+(r0) = j. We have to
show Ecu

− (r0)∩Es
+(r0) = ∅. Note that, by Lemma 3.1, solutions in the intersection

give bounded solutions to the linear equation (57). Write v = (v1, . . . , vj). Then
vj solves Bessel’s equation

vj
r = wj , wj

r = −n− 1

r
wj − νvj .

For ν 6∈ R−, there are no bounded solutions to this equation [Wat22]. Hence, for
(v, w) ∈ Ec(r0) ∩ (E ×E), vj = wj = 0. The equation for vi, i = 1, . . . , j − 1, is

vi
r = wi, wi

r = −n− 1

r
wi − νvi − vi+1.

If vi+1 ≡ 0, the above argument shows that also vi ≡ 0, which proves transver-
sality of the intersection Ecu

− (r0) ∩ (Ec
+(r0) ⊕ Es

+(r0)) by induction on j. Given
transversality of the manifolds, Lyapunov-Schmidt reduction proves smoothness of
the intersection manifold Wc

glob(r0) = Wcu
− (r0)∩Wcs

+ (r0). Transporting the smooth

manifold with the flow gives the r-dependent, smooth manifold W̃c
glob. Transversal-

ity persists for nearby parameter values µ, which gives us a µ-dependent, smooth
family of center manifolds. This proves the proposition.

Proof. [Theorem 3.3] Intersecting W̃c
glob with |u| ≤ δ′ gives a center manifold

W̃c. By construction, W̃c is locally invariant as the intersection of a globally
invariant and a locally invariant manifold. It contains all small bounded solutions
of the original equation (45), since these are bounded solutions to the modified

equation (56), and therefore contained in W̃c
glob. This proves Theorem 3.3.

We remark that in case of a stationary, homogeneous instability (O), the center
manifold is one-dimensional, dimWc(r) = 1. In the Turing case (T), dimWc(r) =
2. In both cases, the tangent spaces Ec(r) depend on r and computing Taylor
jets of a reduced equation does not seem feasible. Also, the behavior of W c(r) for
r → ∞ may be very complicated.

2.2. The asymptotic center manifold W̃c
+. We construct a larger mani-

fold, W̃c
+, which still contains all bounded solutions, but where the tangent space

does not depend on r. In addition, this larger manifold possesses a well-defined
asymptotic as r → ∞.

Theorem 3.7. For all µ sufficiently close to zero, there exists a Cm-center
manifold W̃c

+ (in the sense of Definition 2.13) for equation (49) near the equilibrium

u = 0, α = 0 with local flow Φ̃c
+. The center manifold depends Cm on µ and is

tangent to Ec
+ × R in the extended phase space (u, α) ∈ R

2N × R, at u = 0, α = 0,



40 3. STATIONARY RADIALLY SYMMETRIC PATTERNS

for µ = 0. Moreover, W̃c
+ contains all small bounded solutions u(r), r ∈ R+: there

are δ′ > 0 and α0 > 0 such that, if |u(r)| ≤ δ′ for all r > 0, then (u(r), 1/r) ∈ W̃c
+

for all r ≥ 1/α0.

We emphasize that the term center manifold in this theorem refers to Defi-
nition 2.13 of an autonomous center manifold and not to Definition 3.2 for the
nonautonomous radial dynamics. Figure 2 illustrates the enlarged geometry near
α = 0.

α = 0
r

Ec
+

~
W c

+
~
W c

Es
+

glob

Figure 2. The center manifold W̃c
+ inside W̃c

glob. The three-
dimensional picture is within a neighborhood of u = 0, α = 0,
inside W̃cs

+ .

Proof. Existence of a center manifold is a standard result, see for exam-
ple [Shu87, Van89]. Center manifolds are not unique. We want to choose a center

manifold, which contains the bounded solutions, W̃c. Therefore, consider once
again the modified equation with small nonlinearity Fmod and the global center-
stable manifold W̃cs

+ ; see Proposition 3.4. Within W̃cs
+,glob ∩ (R2N × {α ≤ α0}),

we construct a center (-unstable) manifold W̃c
+,glob, which is forward invariant and

contains W̃c
glob ∩ (R2N × {α = α0}) = Wc

glob(1/α0). Then we restrict W̃c
+,glob to

|u| < δ′ to obtain the asymptotic center manifold W̃c
+. To construct W̃c

+,glob, we

use graph transform as exposed in [Shu87, KH95], for example.

The analysis is performed within W̃cs
+ . Dynamics within W̃cs

+ are determined
by the projection on Ecs

+ = Ec
+ ⊕ Es

+. We therefore consider only graphs within

Ecs
+ , transported with the flow on W̃cs

+ , projected on Ecs
+ . Moreover, we restrict to

graphs over U = Ec
+ × {|α| ≤ α0}, which can be identified with maps from U into

Es
+. Define

Σδ =
{

ψ ∈ BC0(U , Es
+); sup |ψ| ≤ δ,Lipψ ≤ 1

}

.

Together with the distance, induced by the sup-norm on BC0(U , Es
+), Σδ becomes a

closed metric space. We choose and fix Wc
+,glob(α0) = W̃c

+,glob ∩ (R2N ×{α = α0})
as an (arbitrary) extension of Wc

glob(1/α0), tangent to Ec
+(1/α0). For example,

we write Ec(r0) for the tangent space of Wc
glob(r0) in (u, v) = 0 and decompose

Ec
+(r0) = Ec(r0) ⊕ C with arbitrary complement C. We then define

Wc
+,glob(1/α0) =

{

(ψc
0,glob(uc) + uc + v);uc ∈ Ec(r0), v ∈ C

}

,
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where Wc
glob(1/α0) = graphψc

0,glob. We restrict Σδ to graphs respecting the bound-
ary value:

Σ∗
δ =

{

ψ ∈ Σδ ; graphψ(α0, ·) = (Wc
+,glob(1/α0), α0)

}

.

With the topology induced from Σδ, Σ∗
δ is again a closed metric space.

We define the graph transform next. Let Φ̃r denote the flow in W̃cs
+ , projected

on Ecs
+ and let Φ̃1 be the time-one map. We define the graph transform T ψ as a

map on ψ ∈ Σ∗
δ by

graph (T ψ) = Φ̃1(graphψ) ∪Min,

and

Min :=
⋃

0≤r≤1

Φ̃r((α0,Wc
+,glob(α0))),

where Wc
+,glob(α0) is the boundary manifold. It is now tedious but straightforward,

following for example [Shu87], to verify that T is a well-defined map on Σ∗
δ . Also,

a sufficiently high iterate T j is a contraction, due to exponential contraction of the
linearized flow in the direction Es

+, where the graphs take values. The unique fixed

point is forward invariant under Φ̃1 by construction, and invariant under Φ̃r for all
r > 0 by uniqueness, see again [Shu87]. Defining W̃c

+ as the unique fixed point,
intersected with a small neighborhood of (u, v) = 0, we have obtained the desired
center manifold.

Transporting W̃c
+,glob backwards with the flow Φ̃, we can construct a flow-invariant

manifold (which is in addition backward invariant), although we do not need this
construction later on. For the non modified, original vector field (44), this global-

ization of W̃c
+,glob restricted to a small neighborhood of u = 0 is a center manifold

in the sense of Definition 3.2, but of twice the dimension as W̃c in each fiber.

Remark 3.8. Reflecting the construction at α = 0, allows for a construction
of W̃c

+ also for negative radii, on |α| ≤ α0. The center manifold is then invariant
under the reflection R : ((u, v), α) 7→ ((u,−v),−α). The flow Φc

+ is reversible with
respect to R.

3. Expansions and normal forms

The goal of this section is to derive expansions for the bifurcation equations
on W̃c

+. We start with the linearized equation in Section 3.1, identifying the linear
nonautonomous equation in Ec

+. In case of a Turing instability, the dependence on r
can be simplified using smooth, r-dependent, linear transformations. In Section 3.2,
we then use the same strategy to simplify higher-order terms in the spirit of the
normal form theory in Chapter 2, Section 3.3.

Since the tangent space and then the Taylor jet of W̃c
+ in (u, v, α) = 0 is

uniquely determined, the particular construction of W̃c
+ and the matching manifold

W̃cu
− do not play a role in this section.

We restrict to the case of n = 2 for the rest of this chapter. Most of the
arguments are identical for the case n > 2.
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3.1. The linearized equation and expansions. The Taylor jet of the re-
duced vector field on W̃c

+ is uniquely determined and does not depend on the

particular construction involving W̃cu
− in the proof of Theorem 3.7. We expand the

center manifold and the reduced vector field on Ec
+ × {|α| ≤ α0} in the variable

uc ∈ Ec
+ and α. Note that in the invariant subspace α = 0 we obtain the reduced

equations from Chapter 2, equations (14), in case of a homogeneous instability,
and (15), in case of a Turing instability.

Lemma 3.9. In case of a nondegenerate stationary homogeneous instability (O),
the reduced vector field on Ec

+ × {|α| ≤ α0} takes the form

A′ = B(58)

B′ = −αB + γ0(µ, α) + γ1(µ, α)A+ γ2(µ, α)A2 + γ3(µ, α)A3

+R(A,B, α;µ)

α′ = −α2,

in the coordinates from (14). The coefficients γj satisfy

(59) γ0(0, α) = 0, γ1(0, α) = 0, ∂µγ0(0, 0) 6= 0, and γ2(0, α) ≡ γ2(0, 0).

The remainder terms are

R = O



(|µ| + |α|2)|αB| + |αAB| + |B|3 +

2
∑

j=0

|AjB3−j | + (|A| + |B|)4


 .

The full equation is reversible with respect to

(60) (A,B, α, r) 7→ (A,−B,−α,−r).
Proof. We expand the equation for α small and set A′ =: B. We have to check
the conditions on the coefficients γj , (59) and verify the structure of the remainder
R.

For α = 0, the expansions for the vector field and the remainder R are as
derived in Chapter 2. For α 6= 0, the coefficients depend on α with the only
restriction imposed by reversibility, (60). Reversibility of the equation on the center
manifold was already observed in Remark 3.8.

We verify (59), next. For µ = 0, u = 0 is a solution and therefore, γ0(0, α) = 0.
In α = 0, we have ∂µγ0 6= 0, which are the conditions on γ0 claimed in (59).

It remains to show that γ1(0, α) = 0 and γ2(0, α) ≡ γ2(0, 0). For µ = 0, the
linear part of the reduced vector field is the restriction of the full linearized vector
field (46) to Ec

+(r). Now Ec
+ is spanned by (U0, 0) and (0, U0) with U0 spanning

the kernel of ∂UF (0; 0). For the nonautonomous equation

v′ = w, w′ = −1

r
w −D−1∂UF (0; 0)v,

this center space is invariant: Ec
+(r) ≡ Ec

+. Restricting to this invariant subspace
gives A′ = B, B′ = −αB, as claimed. The linear terms in µ as well as the quadratic
terms in A are obtained by projecting the α-independent part of the vector-field on
the α-independent linear center subspace and are therefore α-independent as well,
which shows that γ2(0, α) is in fact independent of α.

In case of a Turing instability, we need normal form transformations. We adapt
the strategy from Theorem 2.17 on nonsemisimple normal forms to the nonau-
tonomous setting, here. We start analyzing the linear part.
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Lemma 3.10. Consider a linearly generically unfolded Turing instability. Then
for any 0 < m <∞ the reduced equation on the center eigenspace Ec

+ can be written
in the following form:

A′ = (ik(α;µ) + ν(α;µ))A +B + O
(

(|A| + |B|)2 + |µ||α|m(|A| + |B|)
)

(61)

B′ = γ1(α;µ)A + (ik(α;µ) + ν(α;µ))B

+O
(

(|A| + |B|)2 + |µ||α|m(|A| + |B|)
)

α′ = −α2

with ∂µγ1(0; 0) 6= 0, k(α; 0) = O(|α|3), ν(α; 0) = −α
2 + O(|α|3), and γ1(α; 0) =

O(|α|3). Here, A and B are defined as for the one-dimensional problem, up to
order α; see Lemma 2.11,.

Proof. We first show that, again, Ec
+(r) ≡ Ec

+. In other words, the so-
lutions to the linear equation (46) which neither grow nor decay exponentially
as r → ∞ span an r-independent linear subspace of Y = R2N . Recall that
spec (−D−1∂UF (0; 0)) ∩ R− = {−k2

∗}, geometrically simple and algebraically dou-
ble. We may transform D−1∂UF (0; 0) into Jordan normal form conjugating with
T . The diagonal transformation (u,w) = (T ũ, T w̃) puts the linearization A(∞)
into block-diagonal structure, which shows invariance of Ec

+. On Ec
+, we obtain the

restriction

Ac(α) =









0 0 1 0
0 0 0 1

−k2
∗ 1 −α 0

0 −k2
∗ 0 −α









.

For convenience, we write Ac(α) as a function of α instead of r, since we want
to use transformations which are smooth in the variable α = 1/r. Set uc =
A(1, 0, ik∗, 0)T +B(0, 2ik∗, 1,−2k2

∗)+c.c., with reversibility acting through (A,B) 7→
(A,−B) and α 7→ −α. We obtain

A′ = (ik∗ −
α

2
)A+B +

α

2
A+ O ((|µ| + |A| + |B|)(|A| + |B|))(62)

B′ = (ik∗ −
α

2
)B − α

2
B + O ((|µ| + |A| + |B|)(|A| + |B|))

α′ = −α2.

Estimates for the higher-order terms are uniform in α small.
Next, we use normal form transformations to eliminate dependence on A and

B on the right side. We subsequently transform uc
j+1 = uc

j + αjTju
c
j , u

c
1 = uc,

j = 1, . . . ,m− 1, with suitable linear, invertible operators Tj . If (uc
j)

′ = Aj(α)uc
j ,

then

(63) (uc
j+1)

′ = Aj(α)uc
j+1 + αj(TjAc(0) −Ac(0)Tj)u

c
j+1 + O

(

|α|j+1
)

.

We may therefore subsequently eliminate all terms which are not part of the Arnol’d
unfolding of A(0), up to any prescribed, finite order in α. We obtain the Arnol’d
normal form as stated in (61) for µ 6= 0..

The transformations Tj can be computed explicitly. Note that the first trans-

formation T1 eliminates the α-dependent terms involving A and B in the equations
for A and B.

As a next step, we show that we may indeed eliminate α-dependence in the
linear part completely at µ = 0, up to the terms γ1, ν, and ik, explicited in (61).
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To start with, set B̃ = B + sB with s = s(α) some function of α to be
determined later. From (61), abbreviating λ = ik∗ − α

2 , we then obtain

B̃′ = B̃
1

1 − ss
(λ− ssλ− α

2
(s− s) − ssr)

if

s′ = −2ik∗s+ α
s2 − 1

2
, α′ = −α2.

Going into a corotating frame s̃ = e2ik∗rs, gives

s̃′ =
1

2
(e−2ik∗r s̃2 − e2ik∗r)α, α′ = −α2.

Rewritten as an integral equation

s̃(r) =

∫ r

∞

e−2ik∗ρs̃2(ρ) − e2ik∗ρ

2ρ
dρ

we see that the right side defines a contraction in the space of functions s̃(ρ),
ρ ≥ R > 0 with R large, and norm supρ≥R |s(ρ)|/ρ.

Next, transforming Ã = A − sA + t1B̃ with s as above, and a suitable α-
dependent coefficient t1, and rescaling B̃ appropriately gives the desired normal
form. The coefficient t1 is found to leading order as −s/(ik∗(1 − ss)) + O(r−2).

This shows that the normal form transformations can, for µ = 0, be carried
out by a smooth function of α, leaving no remainder terms of the form O(|αm|).

It remains to show the expansions for the coefficients k, ν, and γ1.
The claim on the expansion for γ1 follows from the considerations for the as-

ymptotic problem, Lemma 2.11, and reversibility of the system. Inspecting the
definition of the transformations, we readily derive the linear term in ν and see
that quadratic terms in α in the coefficients ν, γ1, and k vanish at µ = 0.

3.2. Nonautonomous normal forms. We adapt the normal form algorithm
to the nonautonomous set-up. We concentrate on case (T) and expand the reduced
equation on Ec

+ as follows, dropping the superscript c of the phase space variable
uc:

(64) u′ = A(α;µ)u+

m
∑

j=2

Gj(u, α;µ) + R(u, α;µ),

where A(α, µ) is the linear part as described in Lemma 3.10, the Gj(·, α;µ) are
homogeneous polynomials of degree j, and the remainder is R(u, α;µ) = O(|u|m+1).

Proposition 3.11. For every 0 < m < ∞ and µ small, there is an α-
dependent, change of coordinates

v = u+ Φ(u, α;µ),

with Φ(u, α;µ) = O(|u|2), such that the new variable v solves the equation in normal
form up to order m

(65) v′ = A(α;µ)v +
m
∑

j=2

Nj(v, α;µ) + R̃(v, α;µ).

The transformation Φ can be chosen polynomial in u and α. The remainder satisfies
R̃(v, α;µ) = O(|v|m+1 + |α|m+1|v|2) and the Nj are homogeneous polynomials of
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degree j in v, with coefficients being polynomials in α, satisfying the normal form
condition

eA
∗(0;0)σNj(v, α;µ) = Nj(e

A∗(0;0)σv, α;µ),

for all σ ∈ R.

Proof. We adapt the proof of Theorem 2.17. Again, we proceed iteratively,
searching in each step a transformation v = u+ Φ(u, α;µ), with Φ a homogeneous
polynomial of degree ` in u. The transformation should eliminate `-th order terms
in the Taylor series (64) that are not in normal form, up to order m in α. To find
Φ, we start a sub-iteration, eliminating successively terms of the form αjP such
that the remaining terms of order ` in u are in normal form up to order j in α. We
therefore use transformations of the form

u = v + αjΦj
`(v;µ).

Suppose at level j − 1 of the sub-iteration, the equation is given as

u′ = A(α;µ)u+

`−1
∑

i=2

Ni(u, α;µ) +

j−1
∑

k=0

αkN k
` (u;µ) + αjPj

` (u;µ)(66)

+O(|α|m|u|2 + |u|`+1 + |α|j+1|u|`)
α′ = −α2.

Here, the Ni represent the normal form part up to order ` − 1. They are polyno-
mials in α and u, homogeneous of degree i in u. The polynomials P j

` and N k
` are

homogeneous of degree ` in u. Then the transformed equation reads

v′ = A(α;µ)v +

`−1
∑

i=2

Ni(v, α;µ) +

j−1
∑

k=0

αkN k
` (v;µ)(67)

+αj(Pj
` (v;µ) + A(0; 0)Φj

`(v;µ) − ∂vΦj
`(v;µ)A(0; 0)v)

+O
(

|α|m|v|2 + |v|`+1 + |α|j+1|v|`
)

α′ = −α2.

Following the proof of Theorem 2.17, we choose Φj
` such that Pj

` + A(0; 0)Φj
` −

∂vΦ
j
`A(0; 0)v to be in normal form. By induction on j, we may therefore remove

all non normal-form terms of degree ` in v, up to order m in α. Induction on ` then
proves the proposition.

Remark 3.12. The above result can be considerably refined. After a more
careful analysis of the homological equation, one can show that terms of order |α|m
can be eliminated completely for m sufficiently large, depending on the length of
Jordan chains in the representation of the linearization A(0; 0) on the homogeneous
polynomials. Without expanding in α = 1/r, we can treat the homological equation
at level ` as a differential equation in the radius r, where we look for bounded
solutions as r → ∞. The second line in (67), the homological equation, then reads
at each fixed order `

Φ′ + ad` A(
1

r
, µ)Φ = O(r−m)

with (ad` AΦ)(v) = AΦ(v)−∂vΦ(v)Av. The eigenvalues of ad` A(0, 0) are sums of
eigenvalues of A(0, 0) and they are all located on the imaginary axis. Therefore, the
fundamental solution of the left hand side of the inhomogeneous differential equation
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grows at most polynomially, with exponent given by the length of the longest Jordan
chain in ad` A(0, 0), minus one. The differential equation can therefore be solved
by separation of variables and the solution is found to possess a formal expansion
in r−1.

Remark 3.13. Instead of eliminating terms in the range of ad` A, we can first
split A = AS + AN into semi-simple and nilpotent parts and only eliminate terms
in the rang of ad` AS. For this semi-simple part, no Jordan-Blocks occur in the
adjoint representation and terms can be eliminated completely with α-dependence.
We may then continue with nonsemisimple normal form transformations, which
however might leave some α-dependence in the coefficients of the remaining normal
form polynomials.

For a Turing instability, the semi-simple normal form transformations yield a
normal form symmetry, acting as complex diagonal rotation as in the one-dimen-
sional case. This normal form symmetry is respected to any order in u for all values
of α, small.

We believe that not all terms can be removed and that any normal form contains
nonlinear terms which explicitly depend on the radius r.

Corollary 3.14. Consider a Turing instability (T) for µ and α close to zero,
in the coordinates of Proposition 2.16. Fix 0 < m <∞. Then there is a change of
coordinates, polynomial in (A,B, α), smooth in µ and O(|µ|+ |α|+ |A|+ |B|)-close
to the identity such that the vector field on W̃c

+ is given by

A′ = (ik(α;µ) + ν(α;µ))A +B + iγ3(α;µ)A|A|2(68)

+O





2
∑

j=0

|AjB3−j | + (|A| + |B|)5 + |µ||α|m(|A| + |B|)





B′ = γ1(α;µ)A + (ik(α;µ) + ν(α))B + γ2(α;µ)A|A|2
+γ4(α;µ)A|A|4 + iγ3(α;µ)B|A|2

+O



|AB2| + |B3| +
4
∑

j=0

|AjB5−j | + (|A| + |B|)7

+|µ||α|m(|A| + |B|))
α′ = −α2

Rescaling time, and going to corotating coordinate frame, the equation can be sim-
plified to

A′ = ν(α;µ)A +B(69)

+O





2
∑

j=0

|AjB3−j | + (|A| + |B|)5 + |µ||α|m(|A| + |B|)





B′ = γ1(α;µ)A + ν(α)B + γ2(α;µ)A|A|2 + γ4(α;µ)A|A|4

+O



|AB2| + |B3| +
4
∑

j=0

|AjB5−j | + (|A| + |B|)7

+ |µ||α|m(|A| + |B|))
α′ = −α2(1 + O(|A|2 + |α| + |µ|))



4. MATCHING AND TRANSVERSALITY 47

Proof. The proof is an immediate consequence of Proposition 3.11 and Re-
mark 3.13, using the representation of the normal form in α = 0 from Proposi-
tion 2.18.

4. Matching and transversality

In this section, we derive our main results. We prove existence and uniqueness
(in an appropriate sense) of branches of bifurcating, radially symmetric stationary
patterns in the three cases of a fold, a cusp, and a Turing instability. For r →
∞, the patterns converge to an equilibrium in the homogeneous case (O) and to
a Turing pattern in case (T). So far, we have derived expansions for the ODE-
description of bounded radially symmetric patterns in the far-field, α = 1/r small.

We start in Section 4.1 scaling the equations on W̃c
+ with the bifurcation parameter

µ. The scalings are the same as obtained in the one-dimensional case, Chapter 2,
Sections 3.4 and 3.5. Since the scalings are in all cases long-wavelength expansions,
the finite hole r ≤ r0 = 1/α0, left out by the description on W̃c

+ becomes very
small. In other words, considering backwards dynamics in r on the asymptotic
center manifold W̃c

+, we stay within r ≥ r0 for large scaled times and long-time

dynamics on W̃c
+ become relevant. As a second step, we isolate bounded solutions

to the scaled equation which would stay bounded if the equation on W̃c
+ was valid

for all r > 0, Section 4.2. The last, major step is then a matching procedure in
Section 4.3. We compute an expansion for the manifold W̃cu

− ∩W̃c
+ at the boundary

of W̃c
+, r = r0. We then find intersections of this matching manifold with the set of

solutions W̃ s
+ inside W̃c

+, converging to a prescribed equilibrium as r → ∞. Main

tool is the λ-Lemma, which gives us expansions for the right matching manifold W̃c
+.

As a major difficulty in the case of a Turing instability (T), the averaging effect,
made visible with the normal form transformations, fundamentally changes the
influence of curvature, represented by the α-dependent terms, in the far-field, W̃c

+,

compared to the core region, W̃cu
− . Close to the center, normal form transformations

break down and produce nonadiabatic locking, compare Chapter 2, Section 3.5. We
recover transversality at a very low order, in spite of the averaging effects in the
far-field.

4.1. Scaling on W̃c
+ and universal equations. We consider the homoge-

neous case (O), first and treat the Turing instability (T) later. Assume that we have
a fold in the kinetics, that is, we assume in Lemma 3.9, that µ ∈ R, ∂µγ0(0, 0) = 1,

and γ2(0, 0) = −1; Hypothesis 2.20. The reduced equation on W̃c
+ then becomes

A′ = B

B′ = −αB + µ−A2 + R(A,B, α;µ)

α′ = −α2,

with R(A,B, α;µ) = O(|µ|2 + (|A| + |B|)3 + |µ|(|A| + |B|)).
Since for µ < 0 the asymptotic equation in α = 0 does not possess small

invariant sets, Remark 2.22, we assume µ > 0 in the sequel.
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We scale A = |µ|1/2Ã, B = |µ|3/4B̃, r = |µ|−1/4r̃, and α = α̃|µ|1/4. The scaled
equation is

Ãr̃ = B̃(70)

B̃r̃ = −α̃B̃ + 1− Ã2 + |µ|1/2|R̃
α̃r̃ = −α̃2

with R̃ = R̃j(Ã, B̃, |µ|1/4α̃;µ) bounded when its arguments is bounded, uniformly

in α̃ ≤ |µ|−1/4α0.
We next consider the case of a cusp, Hypothesis 2.23. The quadratic term

vanishes at bifurcation γ2(0, 0) = 0, and we need two parameters µ = (µ1, µ2).
Assume that ∂µγ0(0, 0) = (1, 0), ∂µγ1(0, 0) = (0, 1), and γ3(0, 0) = 1. We are
particularly interested in the case of multi-stability in the kinetics, and we therefore
assume µ2 < 0; see also Remark 2.25. We then scale µ1 = µ̃1|µ2|3/2, A = |µ2|1/2Ã,

B = |µ2|B̃ r = |µ2|−1/2r̃, and α = α̃|µ2|1/2. The scaled equation is

Ãr̃ = B̃(71)

B̃r̃ = −α̃B̃ + µ̃1 − Ã+ Ã3 + |µ2|1/2R̃(Ã, B̃, |µ2|1/2α̃;µ)

α̃r̃ = −α̃2

with R̃ bounded when its arguments are bounded, uniformly in α̃ ≤ |µ2|−1/2α0.
Consider the case of a Turing instability (T), next. We start from (69), where

we assume γ2(0; 0) > 0, the generic, supercritical case. We need a single parameter
µ ∈ R. Performing an exact normal form transformation to quadratic order in
(A,B), see Remark 3.12 and Remark 2.19, in particular, removing all quadratic
terms for all α small, we arrive at

A′ = B − α

2
A+ O

(

(|A| + |B|)3
)

(72)

B′ = γ1(µ, α)A − α

2
B + γ2(µ, α)A|A|2

+O





2
∑

j=0

|AjB3−j | + (|A| + |B|)5




α′ = −α2.

Without loss of generality, we identify γ1(µ, 0) = −µ ∈ R, and we set γ2(0, 0) = 1.
Nontrivial patterns in α = 0 only exist for µ > 0. We therefore restrict to µ > 0.
We may now scale A = |µ|1/2Ã, B = |µ|B̃, r = |µ|−1/2r̃, and α = α̃|µ|1/2. The
scaled equation is

Ãr̃ = B̃ − α̃

2
Ã+ |µ|1/2R̃1(Ã, B̃, |µ|1/2α̃;µ)(73)

B̃r̃ = − α̃
2
B̃ − Ã+ Ã|Ã|2 + |µ|1/2R̃2(Ã, B̃, |µ|1/2α̃;µ)

α̃r̃ = −α̃2

with R̃j bounded in its arguments, uniformly in α̃ ≤ µ−1/2α0.
We do not discuss the case of a weakly subcritical Turing instability any further.
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4.2. Heteroclinics in the universal equations. We show the existence of
transverse heteroclinics in the scaled and truncated equations (70), (71), and (73),
with µ set to zero. Since the complete section refers to the scaled equations only,
we drop tildes.

Recall that the scaled equations on W̃c
+ are valid for large spatial times, as

µ → 0. In α = 0, we find equilibria, case (O), and periodic orbits, case (T). They

possess a stable (O) or center-stable (T) manifold W̃
s/cs
+ inside W̃c

+, which contains
the solutions converging to those patterns as r → ∞. We transport this manifold
backwards in the radius r inside the manifold W̃c

+. For µ → 0, the scaled radial

time r̃ spent on W̃c
+, α ≤ α0, converges to infinity. We therefore consider the scaled

equation formally at µ = 0, for all r̃ ≥ 0. The scaled equations possess well-defined
asymptotics for r̃ → 0. In case of a homogeneous instability (O), the dynamics in
a neighborhood of r → 0 are very similar to the dynamics in the full equation. The
situation in the Turing instability (T) is slightly different.

Consider the fold first, (70), with µ = 0:

A′ = B, B′ = −αB + 1 −A2, α′ = −α2.

Note that this is the equation for radially symmetric patterns of the scalar elliptic
equation

4A− 1 +A2 = 0.

LetW cu
− (r) denote the set of initial values at time r, which lead to bounded solutions

as r → 0. From Proposition 3.5 we know that W cu
− (r) is a smooth, one-dimensional

manifold for each r > 0.
At α = 0, we have two equilibria from the fold, A = ±1, B = 0. Inside

α = 0, only A = −1 is hyperbolic (and actually stable for the reaction-diffusion
system (2)). Denote by W s

+(r;−1) the initial values which lead to solutions con-
verging to (A,B) = (−1, 0) for r → ∞. From Proposition 3.6 and hyperbolicity of
(A,B) = (−1, 0) in the asymptotic equation for r = ∞, we know that W s

+(r;−1)
is a one-dimensional manifold for each r as well.

Proposition 3.15. [KP97] There exists a unique nonconstant bounded solu-
tion q∗(r) to (70) with µ = 0, which converges to A∗ = −1 for r → ∞. The solution
is smooth down to r = 0 and transverse:

Tq∗(r)W
s
+(r;−1) ⊕ Tq∗(r)W

cu
− (r) = R

2.

Proof. We refer to [KP97] for a comprehensive discussion of the general type of
problem. There are actually several ways to prove the proposition. One way is to
exploit the variational structure of the equation. We outline another proof using
a shooting argument. The existence proof via a shooting argument goes back to
[BLP81]; see also [KP97, Thm. 24.1]. First observe, that the Hamiltonian for the
α = 0-system

J(A,B) =
1

2
B2 −A+

1

3
A3

is a Lyapunov functional for the nonautonomous system:

d

dr
J(A(r), B(r)) = −1

r
B2 ≤ 0.

The nonautonomous term 1
rB acts like a damping to the pendulum equation in

α = 0. Note, that J(−1, 0) = 2/3 and the level set J = 2/3 consists of the stable
and unstable manifolds of (−1, 0); see also Chapter 2, Figure 3. In particular,
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the interior of the bounded subset of R2 inside the homoclinic is forward invariant
under the evolution to the nonautonomous equation. We consider the trajectories
(A(r), B(r)) in W̃ cu

− , that is A(0) = A0, B(0) = 0. We trace the first zero of B for
r > 0 when A0 is increased. For A0 > 0 small, we stay inside the region bounded
by the homoclinic and we have B(r0(A0)) = 0 for some finite r0. One also easily
checks that r′0 < 0. On the other hand, for A0 >> 1 large, there is no zero of B.
The initial value A∗

0 of the heteroclinic q∗ is found as the supremum over initial
values A0, for which there still exists r0 with B(r0) = 0. Transversality is proved
using monotonicity of the zero r′0 < 0; see also [KH81b].

Consider the cusp, next. The equation at µ2 = 0

Ãr̃ = B̃

B̃r̃ = −α̃B̃ + µ̃1 − Ã+ Ã3

is as above the equation for radially symmetric solutions of a scalar elliptic equation

4A− µ1 +A−A3 = 0.

The asymptotic equation (71) at α = 0, with µ2 = 0 becomes

A′ = B, B′ = −αB + µ1 −A+A3, α′ = −α2.

It possesses three equilibria A− < A0 < A+, B = 0, within the bistability region,
bounded by |µ1| < 2

3
√

3
= µ∗; see Proposition 2.24. The outer equilibria (A±, 0) are

saddles in the asymptotic equation (71) with α = 0, µ2 = 0. They possess stable
manifolds which we denote by W s

+(r;A±).

Proposition 3.16. For −µ∗ < µ1 < 0, there exists a unique, smooth, non-
constant bounded solution q+∗ (r) to (71) with µ2 = 0, which for r → ∞ converges
to (A+, 0). For 0 < µ1 < µ∗, there exists a unique nonconstant bounded solution
q−∗ (r) to (71) with µ = 0, which for r → ∞ converges to (A−, 0). The solution is
smooth down to r = 0 and transverse: Tq±

∗ (r)W
s
+(r;A±) ⊕ Tq±

∗ (r)W
cu
− (r) = R

2.

Proof. [KP97] The proof is similar to the proof of Proposition 3.15.
We give a different proof for µ1 close to zero, which emphasizes the aspect

of coexistence of stable equilibria. The idea of the proof will be further exploited
in Chapter 4 in order to find target patterns. In the region of µ1 small, we may
interprete the solution as a phase boundary between the two stable states A±. We
find the heteroclinics from a heteroclinic bifurcation, which is depicted in Figure 3.
For µ1 = 0, we have a heteroclinic cycle in the system at α = 0, connecting A+

to A− and vice versa. In addition, we have transverse heteroclinics connecting
r = 0 to α = 0 along the constants A± = ±1. By transversality and the λ-Lemma

[KH95, Thm. 6.2.8, Prop. 6.2.23], W̃ cu
− is close to the center-unstable manifolds of

(A±, 0). The center-stable manifold of the equilibria (A±, 0) intersect transversely
the center-unstable manifolds of (A∓, 0) along the asymptotic heteroclinic cycle in
the extended phase space. Tangent vectors in the center direction are transported
with the linearization, where α′ = 0 and the derivative with respect to α is the
same as for the damped pendulum, where transversality is known; see Chapter
2, Chapter 2, Section 3.4. Varying µ1, this transverse intersection persists as an
intersection for α > 0 or α < 0 depending on the sign of µ1. Since W̃ cu

− is close to
the center-unstable manifolds of the equilibria, we obtain heteroclinic intersections
between W̃ cu

− and W̃ cs
+ (A±). The connections appear for different signs of µ1, since

the equation is invariant under the reflection (A,B;µ1) 7→ (−A,−B;−µ1).
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Wcu
-

Ws (A-)+

Wcu (A-)+

α = 0

Ws (A+)+

r = 0

A+

A-

u=0

~
~

~

~

Figure 3. The coexistence boundary in the cusp bifurcation is cre-
ated from two heteroclinics, representing the trivial first state of the
system in radial dynamics, and the one-dimensional coexistence in-
terface.

Consider the generic, supercritical Turing instability, which has lead us to the
reduced, scaled equation (73). We rewrite (73) at µ = 0, setting B̂ = B − α

2A, as

Ar = B̂(74)

B̂r = −αB̂ +
1

4
α2A−A+A|A|2

αr = −α2

Note that this formally is the equation for charge-1/2 defects to the Ginzburg-
Landau equation

(75) 4A+A−A|A|2 = 0,

that is, solutions of the form A(r)ei`ϕ with topological charge ` = 1/2 — which, of
course, would be discontinuous as a solution to (75).

In the α = 0-fiber, we have three real equilibria with A = −1, 0, and 1. The
equilibrium with A+ = 1 is hyperbolic within the real subspace and we denote by

W̃ cs
+ (A+) its center-stable manifold in the extended phase space C2 × R+.

We also need to consider r̃ small due to the scaling in µ for r small. We set
τ = log r and B̂ = r−1B0 and obtain

Aτ = B0(76)

B0
τ =

1

4
A+ r2(−A+A|A|2)

rτ = r.

The equilibrium A = B0 = 0, r = 0, possesses a two-dimensional center-unstable
manifold which we denote by W cu

− .
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Proposition 3.17. There exists a unique bounded, real solution q∗(r) of (74,
76), which converges to (A,B) = (1, 0) for r → ∞ in (74) and is contained in W cu

− ,
with q∗(r) = O(

√
r). The heteroclinic is transverse in the full complex phase space

of (74), that is, W cu
− and W cs

+ (A+) intersect transversely along q∗.

Proof. Is identical to the one in [KH81b, Lem. 3.1]. There, the equation
A′′+A/r−k2/r2A = −A+A|A|2 was considered with k integer. The case k = 1/2,
here, does not alter the proofs, given there.

Similarly, transverse heteroclinics can be found for the subcritical and weakly
subcritical equation.

4.3. Persistence. We show that the heteroclinics found in Section 4.2, in the
scaled equation within W̃c

+, yield branches of solutions in the full reaction diffusion
system. The main step consists in a matching procedure at the boundary α = α0 of
W̃c

+. Main tool is again transversality, exploiting in addition the particular scalings.
We start analyzing the case of the fold.

Theorem 3.18. [Fold] Assume a linearly generically unfolded homogeneous
instability (O), Definition 2.10. Assume that the bifurcation in the kinetics is a fold
with two equilibria for µ > 0; see Section 4.1. Then the solution of the universal
equation found in Proposition 3.15 yields a unique branch of solutions to the full
reaction-diffusion system (44), asymptotic for r → ∞ to a spatially homogeneous

equilibrium of amplitude
√

|µ|. The solutions are smooth in r down to r = 0.

In terms of the original reaction-diffusion system, we have found a branch of
nontrivial, radially symmetric solutions U(r;µ), of amplitude O(

√

|µ|), emanating
from the origin U ≡ 0, µ = 0. The nontrivial solutions coexist with the two
trivial, spatially homogeneous equilibria which coalesce in the fold bifurcation. The
solution U(r;µ) converges for r → ∞ to the spatially homogeneous equilibrium
which is stable for the reaction-diffusion system.

Proof. We want to find intersections of the center-unstable manifold W̃cu
− with

the stable manifold W̃ s
+ ⊂ W̃c

+. We therefore try to match the two manifolds
at r = r∗ = 1/α0. We first compute expansions of the center-unstable manifold

W cu
− (r∗) = Wcu

− (r∗) ∩ W̃c
+, projected on the tangent space to W̃c

+ at A = B = 0,
α = α0, the center eigenspace Ec

+. We claim that W cu
− (r∗) = {(a, ψu

−(a)); a ∈
(−δ, δ)} with some finite δ small and ψu

−(a) = O(a2 + |µ|), in the coordinates of
Lemma 3.9. Indeed, the tangent space of Wcu

− (r∗) in u = 0 is transported by the
linearized equation. Within the subspace Ec

+, which is invariant for the linearized
equation, the solutions that are bounded at r = 0 are of the form (a, 0), which

proves the claim. We next compute the expansion of the stable manifold W̃ s
+(r∗) of

Ã =
√

|µ|, inside W̃c
+(r∗), projected on Ec

+; see Proposition 3.15 for the definition

of the manifold W̃ s
+. In the scaled coordinates, r = r∗ corresponds to r̃∗ = |µ|1/4r∗,

which is close to zero.
We argue next that the stable manifold W̃ s

+(r∗) is close to the unstable subspace
Ecu

− (r∗). We therefore first consider the truncated, reduced equation. We transport

in backwards radial time the stable manifold W̃ s
+(r∗), which is transverse to the

center-unstable manifold of the origin, W cu
− (r), for all r by transversality of the

heteroclinic. Evoking the λ-lemma, any such transverse manifold converges to the
stable subspace at r = 0, with exponential rate 1 − ε in the rescaled radial time τ .
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Note that the origin is not hyperbolic, but the λ-lemma still holds [KH95, Thm.
6.2.8, Prop. 6.2.23]. In particular, at scaled radial time r̃∗ = |µ|1/4r∗, the stable

manifold W̃ s
+ at r̃∗ = |µ|1/4r∗ is |µ|1/4−ε-close to the unstable subspace at r = 0.

In the scaled coordinates, it is given through

(77) W̃ s
+(r∗) = {(q̃(0) + ψs

+(b), b); b ∈ (−δ, δ)}, with ψs
+(b) = O(|µ|1/4−ε + |b|2)

for any fixed ε > 0 small. We estimate the perturbation coming from the remainder
terms, next. Integrating the perturbation O(

√

|µ|) over a time-interval O(|µ|1/4),

gives a perturbation of at most O(|µ|1/4). This does not alter the expansion in (77).
In the original, un-scaled coordinates, the expansion (77) transforms into

(78) W s
+(r∗) =

{(

|µ|1/2
(

q̃(0) + ψs
+(b;µ)

)

, |µ|3/4b
)

; b ∈ (−δ, δ)
}

.

We look for intersections between W s
+(r∗) and W cu

− (r∗), which are solutions to

a = |µ|1/2(q̃(0) + ψs
+(b)), ψu

−(a) = |µ|3/4b.

Scaling a = |µ|1/2ã gives

ã = q̃(0) + ψs
+(b), b = |µ|−3/4ψu

−(ã|µ|1/2a, µ).

By the expansion for ψu
−, the second equation becomes b = O(|µ|1/4), and we can

solve for (ã, b)(µ) with the implicit function theorem.

The cusp bifurcation allows for an analogous treatment.

Theorem 3.19. [Cusp] Assume a linearly generically unfolded homogeneous
instability (O), Definition 2.10. Assume that the bifurcation in the kinetics is a
cusp with two stable equilibria inside the cuspoidal region; see Section 4.1. Then
the solution of the universal equation found in Proposition 3.16 inside the cuspoidal
region yields a unique branch of solutions to the full reaction-diffusion system (44),

asymptotic for r → ∞ to a spatially homogeneous equilibrium of amplitude
√

|µ2|.
The solutions are smooth in r down to r = 0.

In terms of the original reaction-diffusion system, we have found nontrivial radi-
ally symmetric solutions U(r;µ), of amplitude O(

√

|µ2|), close to the origin U ≡ 0,
µ = 0. The nontrivial solutions exist in the cuspoidal region of coexistence of sta-
ble equilibria, outside the curve in parameter space, where the two stable equilibria
coexist in the one-dimensional problem, Proposition 3.16. The nontrivial solution
U(r;µ) converges to the spatially homogeneous equilibrium for r → ∞, which is
stable for the reaction-diffusion system, but which in the one-dimensional problem
is invaded by the other stable equilibrium; see Remark 2.26. The theorem does not
guarantee the existence of radially symmetric patterns inside the entire coexistence
domain, although we strongly suspect that this is what actually happens.

Proof. The proof is similar to the proof of Theorem 3.18. We indicate the
necessary changes. The expansion for W cu

− (r∗) = {(a, ψu
−(a)); a ∈ (−δ, δ)} is

ψu
−(a) = O(|a|3 + |µ2a| + |µ2|2), since for µ1 = 0, the trivial equilibrium per-

sists, and for µ = 0, quadratic terms vanish. The expansion for W s
+(r∗) in scaled

coordinates is the same as in the case of a fold , (77). The perturbation term
R in (71) again only gives a small contribution. In the original scaling, we ob-
tain W s

+(r∗) = {(|µ2|1/2(q̃(0) + ψs
+(b), µ), |µ2|b}; b ∈ (−δ, δ)}. We scale as before

a = |µ2|1/2ã and solve the equation for the intersection

ã = q̃(0) + ψs
+(b), b = |µ2|−1ψu

−(|µ2|1/2ã).
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In particular, b = O(|µ2|1/2) and we may solve the equation by the implicit function
theorem.

In case of a Turing instability, a similar persistence result holds.

Theorem 3.20. [Turing] Assume a linearly generically unfolded Turing insta-
bility (T), Definition 2.10. Assume that the cubic coefficient in the reduced equation
is positive, that is, stable Turing patterns of amplitude O(

√
µ) exist in the region

µ > 0, where the trivial state is unstable. Then the solution of the universal scaled
equation, found in Proposition 3.17, yields a unique branch of solutions to the full
equation for any fixed asymptotic wavenumber k close enough to k∗. The solutions
are smooth in r down to r = 0.

The solutions found in this theorem correspond to radially symmetric focus
patterns of the original reaction-diffusion system; see Chapter 1, Figure 5. For
large values of the radius, they resemble concentric circles, spaced at the uniform
distances 2π/k. Up to the curvature terms O(1/r), they consist of essentially one-
dimensional Turing patterns. Close to the center, the amplitude of the Turing
pattern decays. The construction of the pattern is as a transverse heteroclinic orbit
between the origin, Wcu

− , and the stable manifold of a single asymptotic Turing
pattern. By robustness, for any fixed parameter value µ, there exists a family of
such focus patterns, parameterized by the asymptotic wavenumber k. We do not
know if focus patterns exist for any small amplitude asymptotic Turing pattern.
The results presented here do only give information for patterns which are close to
the most critical wavenumber k∗. Probably, Eckhaus stability of the asymptotic
Turing pattern is a necessary condition for existence.

Proof. We look for intersections of the manifold W̃cu
− that consists of solutions

of the full system (44), which are bounded for r → 0, with the stable manifold

W̃ s
+ ⊂ W̃c

+ of the Turing pattern (Ã, B̃) = (1, 0) from Proposition 3.17, inside

the asymptotic center manifold W̃c
+. We find these intersections for fixed radial

time r∗ = 1/α∗, sufficiently large, independent of µ. We therefore compute Taylor
expansions of these manifolds.

To start with, we compute expansions for the tangent space of W̃cu
− in u = 0.

We therefore consider the full reaction-diffusion system (44). Going back to the

proof of Lemma 3.10, we already have seen, that the tangent space Ec
+ of W̃c

+ in
u = 0 is independent of r, and the linearized reaction-diffusion equation (46) can
be written in Jordan normal-form

(79) u′′1 = −1

r
u′1 − k2

∗u1 + u2, u′′2 = −1

r
u′2 − k2

∗u2.

Without loss of generality, we set k∗ = 1 in the sequel, rescaling the radius r if
necessary.

Solutions bounded as r → 0 are given explicitly in terms of Bessel functions.
A way of finding expansions for these solutions is, to start with bounded or mildly
growing solutions to the equation for (u1, u2) omitting the terms with 1/r. We
find u1(r) = cos r and u1(r) = r sin r. We then substitute x1 for r and consider
u1 as a solution for the two-dimensional problem, independent of x2, where x =
(x1, x2). These are smooth solutions to the two-dimensional problem. Rotating
these functions around the origin, we find new solutions. The average of these
solutions over all possible rotations gives a radially symmetric, bounded solutions
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to (79). Expliciting the average integrals, we find explicit bases for the component

of the tangent space to W̃cu
− in Ec

+ in terms of Bessel functions:

u1(r) = (J0(r), 0, J
′
0(r), 0)

T
, u2(r) = (rJ1(r), J0(r), (rJ1)

′(r), 2J ′
0(r))

T

where the Jk denote the Bessel functions of the first kind.
Exploiting the asymptotic expansions

J0(r) =
1√
r

(

cos(r − π

4
) + O(

1

r
)

)

, J1(r) =
1√
r

(

cos(r − 3π

4
) + O(

1

r
)

)

,

we find

u1(r) =
1√
r

(

cos(r − π

4
), 0, cos(r +

π

4
), 0
)T

+ O(r−3/2)

u2(r) =
√
r

(

cos(r − 3π

4
) + O(

1

r
),

1

r
cos(r − π

4
),

cos(r − π

4
) + O(

1

r
),

2

r
cos(r +

π

4
)

)T

+ O(r−3/2).

In complex (A,B)-coordinates, this gives, after renormalization of the basis,

(A,B) = eiϕ(s1 + is2 + O(
1

r
),

1

r
is2) + O(r−2),

where ϕ = r − π
4 . The nonlinear manifold can therefore be written in the form

W̃ cu
− =

{

(A,B)T = eiϕ

(

s1 + is2 + O(
1

r
),

1

r
is2

)T

+ O(r−2 + s21 + s22)

}

.

Consider next the matching subspace W̃ s
+. We scale the reduced equation (72)

for µ > 0 as in Section 4.1, A =
√
µa, B =

√
µb, α =

√
µβ, ∂r =

√
µ∂ρ. For

convenience, we use the slightly different notation avoiding tildes. We find

aρ = b− β

2
a+ O(

√
µ)

bρ = −a− β

2
b+ a|a|2 + O(

√
µ)

βρ = −β2.

Error terms are uniformly bounded in β ≤ β0µ
−1/2, together with their deriva-

tives. We reparameterize the radius eτ = ρ and factor out the diagonal linear part,

replacing â =
√
ρa, b̂ =

√
ρb. We find, to leading order

âτ = ρb̂

b̂τ = −ρâ+ â3

ρτ = ρ,

up to remainder terms O(
√
µ). Note that ρ = 0 is invariant with flow

â(τ) = â(0), b̂(τ) = b̂(0) + τ(â(0))3.

Lemma 3.21. The invariant plane ρ = 0 is smoothly fibered by a strong unstable
fibration: for any δ > 0 and ρ0 > 0, there exists a smooth coordinate change
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(â, b̂) 7→ (ã, b̃), depending on ρ, 0 ≤ ρ ≤ ρ0, O(ρ1−δ
0 )-close to the identity, such that

in the new coordinates we have

ãτ = 0, b̃τ = ã3, ρτ = ρ.

Proof. [of Lemma 3.21] We renormalize â = a0 +an, b̂ = b0 + a3
0τ + bn and obtain

ȧn = ρb̂ = eτ (b0 + a3
0τ + bn)

ḃn = −ρâ+ â3 − a3
0 = −eτ (a0 + an) + (a0 + an)3 − a3

0

and ˙ = d
dt denotes derivative with respect to time τ = log ρ. Trajectories which

decay in backwards time are found as fixed points of the integral formulation

an(τ) =

∫ τ

−∞

(

eσ(b0 + σa3
0 + bn(σ))

)

dσ

bn(τ) =

∫ τ

−∞

(

−eσ(a0 + an(σ)) + (a0 + an(σ))3 − a3
0

)

dσ.

The right side defines a map on functions an, bn ∈ C0((−∞, τ0],R). Equipping the
continuous functions with exponential weights

‖(a, b)‖δ = sup
τ≤τ0

e(1−δ)τ (|a(τ)| + |b(τ)|),

we readily show that the right side defines a contraction mapping in a sufficiently
small neighborhood of a ≡ b ≡ 0. Dependence on a0 and b0 is smooth, since the
nonlinearity is differentiable on the function space.

We continue the proof of Theorem 3.20. Recall, that we consider W s
+ in the neigh-

borhood of the basic solution q∗(ρ) from Proposition 3.17 which decays for ρ → 0
with expansion q∗(ρ) = q0∗ρ

1/2 + O(ρ3/2). We know from Proposition 3.17 that
this particular solution is a transverse heteroclinic. In particular, we do not have
solutions to the real, linearized equation with a bounded a-component

aρρ +
1

ρ
aρ − 1

4ρ2
a+ a− 3q2∗(ρ)a = 0.

We expand W s
+ in the coordinates ã, b̃ from Lemma 3.21. Since a → 0 in the

original coordinates, â, ã → 0. By Lemma 3.21, we therefore have b̃ ≡ const =: q0∗.
We therefore can parameterize part of the stable manifold by

W s
+(ρ) =

{

(0, q0∗) + (ψs
1(λ), ψ

s
2(λ)), λ ∈ C)

}

.

Since the linearized equation does not possess bounded solutions, we know that
have (ψs

1)
′(0) is invertible. Indeed, otherwise the tangent space to W s

+ would be
given by (0, ∗) and solutions in this tangent space would remain bounded for the
linearized equation. We can therefore rewrite

W s
+(ρ) = {(λ, ψs(λ)), λ ∈ C} .

We transport this manifold with the flow from Lemma 3.21 in backwards time
ρ→ 0 and derive the expansion

W s
+(ρ) =

{

(λ,O(|λ| + |λ|3| log ρ|), λ ∈ C
}

.

Back in (a, b)-coordinates, rescaling λ = ρ1/2λ̃, this gives W s
+(ρ) = {(a, b) =

(λ̃,O(|λ̃|)), λ ∈ C}. Rescaling with µ to the normal form (Ã, B̃)-coordinates,

we find the expansion W s
+(ρ) = {(Ã, B̃) = (λ|µ|1/2, 0) + O(|µ|3/4), λ ∈ C}. In

the last step, we go back the normal form transformation, which however is readily
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seen to preserve the subspace (∗, 0) to first order in α and we find in the original
(A,B)-coordinates

W s
+(ρ) =

{

(A,B) =
(

λ|µ|1/2,O(α2|µ|1/2 + |µ|3/4)
)

, λ ∈ C

}

.

We have to match the expressions we have obtained for W s
+ and W cu

− so far. Inter-
sections solve the system of equations

λ|µ|1/2 = (s1 + is2)e
iϕ + O(α∗(|s1| + |s2|) + s21 + s22)

α∗is2e
iϕ = O

(

α2
∗(|s1| + |s2|) + α2

∗|µ|1/2 + |µ|3/4
)

,

where α∗ = 1/r∗, small, is the matching distance to the origin and ϕ = 1/α∗−π/4.
In order to solve this system of equations, we fix s1 = 0 and vary α∗ > 0, small,
instead. Rescaling s2 = |µ|1/2σ gives

λ = iσeiϕ + O(α∗|σ| + |µ|1/2σ2)

α∗iσeiϕ = O(α2
∗ + |µ|1/4).

We solve the first equation for λ and plug the result into the second equation:

iσei/α∗ = O
(

α∗|σ| + |µ|1/4
)

.

Since the linearization of the left hand side of this equation is invertible and the right
hand side is small, we find locally unique solution branches in µ. The perturbations
Rj in (73) are again of lower order along the solution. This proves Theorem 3.20.

Remark 3.22. The analysis and the result differ from the formal arguments
in [BS78, PZM85, CH93]. We do not use phase-diffusion equations, which loose
their validity in the core region; see also [Schn95]. Instead we treat the full reduced
problem, which is equivalent to a Swift-Hohenberg equation. The result proves ex-
istence of patterns with bounded amplitude, in spite of the (necessarily) diverging
wave vector B/A. A second difference comes from the considerations of nonadi-
abatic effects. The phase-diffusion equation includes an averaging over the finite-
wavelength Turing patterns in the spirit of the normal form transformation in The-
orem 2.17. Near the center of the focus pattern, this averaging breaks down. The
effect is seen already at the level of a formal dimension counting argument. We
prove existence of focus patterns for an open range of asymptotic wave numbers k:
in the nonautonomous radial dynamics, the stable manifold of a Turing pattern at
r = ∞ is two-dimensional and intersects the two-dimensional matching manifold
W cu

− transversely. The dimension counting argument is in fact much more gener-
ally valid, not only for patterns of small amplitude near homogeneous equilibria.
Amplitude equations, like the universal equation (76) we derived, predict a wave
number selection by the focus pattern [CH93].





CHAPTER 4

Time-periodic radially symmetric patterns

This chapter is devoted to the existence of time-periodic, radially symmetric
solutions of the reaction-diffusion system (2) close to an oscillatory instability (H),
(TH). Combining the ideas from Chapter 2, Section 4, where we used ill-posed, one-
dimensional spatial dynamics on time-periodic functions to describe small bounded
solutions, with the reduction procedure from Chapter 3 for radial dynamics, we
prove center manifold reductions, analogous to Theorems 3.3 and 3.7, for radial
dynamics on time-periodic functions; see Theorems 4.1 and 4.8. The starting point
is a formulation of the problem in radial dynamics in Section 1. In Section 2, the
main reduction results are proved. Roughly following the lines of Chapter 3, we
derive far-field equations on W̃c

+ in case (H), Section 3, and discuss heteroclinic
orbits for the scaled equations in Section 4. We conclude the section with the main
existence results, Theorems 4.12 and 4.13 on existence of target patterns in the full
reaction-diffusion system. Again, the final step is a matching procedure between
manifolds W̃ cu

− from the core region and W̃ s
+ from the asymptotic plane waves.

The plane waves in the far-field of the target-pattern solutions in the theorems
possess group velocity directed towards the center in Theorem 4.12, and group
velocity directed away from the center in Theorem 4.13. The latter are found in a
degenerate bifurcation, where we recover a cubic-quintic complex Ginzburg-Landau
equation. We refer to the discussion, Chapter 5, Section 3, for an analysis of target
patterns in the generic, cubic case.

We do not attempt to describe solutions of the reduced equations in case (TH),
although focus patterns in the spirit of Theorem 3.20, asymptotic to standing waves,
might be amenable to the type of analysis that we present here.

We generally stay with the notation introduced in Chapter 3, Section 2.1.

1. Radial dynamics on time-periodic functions

We study oscillatory instabilities of

Ut = D4U + F (U ;µ),

where F (0;µ) = 0 allows for a trivial homogeneous equilibrium for µ close to zero;
see Chapter 2, Section 2. The linearized equation

Vt = D4V + ∂UF (0; 0)V,

is assumed to possess the unique, up to reflection in x and complex conjugation,
nondecaying solution

V (t, x) = eiω∗te±ik∗xU0,

with ω∗ 6= 0, see Definition 2.3 for the definition of oscillatory instabilities of type
(H) and (TH). Following the strategy of Chapter 2, Section 4, we rescale time

59
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t = ω−1t̃ with parameter ω close to ω∗, and look for 2π-periodic solutions, which
are radially symmetric:

ωUt = D

(

Urr +
n− 1

r
Ur

)

+ F (U ;µ), U(0, r) = U(2π, r), Ur(0, r) = Ur(2π, r),

where r = |x| is the radius in polar coordinates. We rewrite the system as a
differential equation in spatial time r

ur = w(80)

wr = −n− 1

r
w −D−1 (−ω∂tu+ F (u;µ))

with linearization

vr = w(81)

wr = −n− 1

r
w −D−1 (−ω∂tv + ∂UF (0; 0)v) .

Here u(r, ·) = (u,w)(r, ·) and v(r, ·) = (v, w)(r, ·) are 2π-periodic functions of time
t. We briefly write (81) as ur = A(r;ω)u. The nonlinear equation can be writ-
ten shortly as ur = A(r;ω)u + F(u;µ) with F((u, v);µ) = (0,−D−1(F (u;µ) −
∂UF (0; 0)u))T = O(|u|2 + |µ|).

The linearized equation decouples into infinitely many ordinary differential
equations using the Fourier decomposition (v, w) =

∑

`∈Z
(v`, w`)ei`t. We obtain

v`
r = w`(82)

w`
r = −n− 1

r
w` −D−1

(

−ωi`v` + ∂UF (0; 0)v`
)

.

For r → ∞, we formally obtain an asymptotic equation which is precisely the same
as in the one-dimensional case, Chapter 2, Section 4:

v`
r = w`(83)

w`
r = −D−1

(

−ωi`v` + ∂UF (0; 0)v`
)

.

We write (83) in the compact form v`
r = A`(∞;ω)v`. Denote by E`,c

+ the cen-

ter eigenspace of A`(∞;ω∗), and let Ec
+ :=

∑

`E
`,c
+ ei`t ≤ Y = H1/2(S1,RN) ×

L2(S1,RN) denote the center eigenspace of A(∞;ω∗) : Y 1 ⊂ Y → Y ; see also
Chapter 2, Section 4 for the definitions of the function spaces Y, Y 1. Recall from

Chapter 2, Section 4 that for |`| sufficiently large, E`,c
+ is trivial.

Similarly, we construct infinite-dimensional stable, Es
+, and unstable, Eu

+, sub-

spaces of the operator A(∞;ω∗) : Y 1 ⊂ Y → Y .
These spaces can be continued to spaces Es

+(r∗), Ec
+(r∗), Eu

+(r∗), which repre-
sent initial conditions to (83) giving rise to strongly continuous solution operators

Φs,c,u
+ (r, r∗) : Y → Y , mapping Ej

+(r∗) onto Ej
+(r), on 1 ≤ r∗ ≤ r, on r∗, r ≥ 1,

and on 1 ≤ r ≤ r∗, respectively. Moreover, we have the uniform estimates

(84) |Φs,u
+ (r, r∗)|Y →Y ≤ Ce−η|r−r∗|, |Φc

+(r, r∗)|Y →Y ≤ Ceδ|r−r∗|

for any δ > 0 with some constants C(δ) and η > 0. These solution operators can be
constructed for each ` separately, see Lemma 3.1 and [SS99] (a different approach
was taken in [PSS97]).
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In the asymptotic equation, setting r = ∞, reversibility again acts as a reflec-
tion R : (u,w) 7→ (u,−w); see Chapter 3, Section 2.1. Note that REs

+ = Eu
+ and

that dimEc
+ = dc <∞ is finite and even, by reversibility.

Similar to Chapter 3, we consider the autonomous systems

u′ = w(85)

w′ = −(n− 1)αw −D−1 (−ω∂tu+ F (u;µ))

α′ = −α2,

with ′ = d
dr , for α ≤ α∗ finite, describing the limit r → ∞, and

u̇ = rw(86)

ẇ = −(n− 1)w −D−1 (−ωr∂tu+ rF (u;µ))

ṙ = r

with ˙= d
dτ , τ = log r, describing the limit r → 0. Note however, that in the formal

limiting system, (86) with r = 0, the differential operator ∂t disappears.

2. Center manifolds

2.1. The nonautonomous center manifold W̃c. Following the ideas from
Chapter 3, Section 2.1, we construct a nonautonomous center manifold, which
contains the set of bounded solutions. The following result refers to the definition
of a nonautonomous center manifold, Definition 3.2, with the concept of a solution
as in Chapter 2, Section 4.2: u ∈ C0(J, Y ) is a solution on an interval J , if u ∈
C1(int J, Y ) ∩ C0(int J, Y 1) and ur = A(r;ω)u+ F(u;µ) for r ∈ int J . Recall that
temporal time-shifts act on Y via γθ, θ ∈ R/2πZ; see Chapter 2, Section 4.

Theorem 4.1. For each 0 < m < ∞ and µ close to zero, there exists a Cm-
center manifold W̃c for equations (85), (86), of dimension 1

2dimEc
+ + 1. The

dependence on the parameter µ is Cm. The manifold is invariant and the local flow
on the manifold is equivariant under the action of the temporal time-shift symmetry
γθ.

The proof follows the proof of Theorem 3.3. We construct manifolds W̃ cu
− and

W̃cs
+ for a modified equation, which are backward and forward invariant, respec-

tively. We then define W̃c as the intersection W̃cu
− ∩ W̃cs

+ , restricted to a small
neighborhood of u = 0.

We start modifying F as in Chapter 3, Section 2.1 with the smooth cut-off
function χ, for some small enough δ′,

Fmod(u;µ) := χ

( |u|2 + |µ|2
δ′

)

(F (u;µ) − ∂UF (0; 0)u),

with χ(s) = 1 for s ≤ 1 and χ(s) = 0 for s ≥ 2, χ′ < 0 on (1, 2). The associated
modified nonlinearity Fmod((u,w);µ) = (0,−D−1Fmod(u;µ)) is globally Lipschitz
continuous on Y with LipFmod → 0 for δ′ → 0.

We construct the center-stable manifold W̃cs
+ , first. Consider the modified

version of equation (85), describing solutions near r = ∞,

u′ = w(87)

w′ = −(n− 1)αw −D−1 (−ω∂tu+ Fmod(u;µ))

α′ = −α2.



62 4. TIME-PERIODIC RADIALLY SYMMETRIC PATTERNS

and (u,w, α) ∈ Y × R.

Definition 4.2. We say a manifold M̃ ⊂ Y × R is a Cm global center-stable
manifold of (87), if M̃ ⊂ Y × {|α| ≤ α0} for some α0 > 0, and if there is a global

strongly continuous semi-flow Φ̃cs(r), r ≥ 0 on M̃, such that M̃ is forward invariant

under Φ̃cs, trajectories of Φ̃cs are solutions of (87), and M̃ contains all solutions
of (87), which are defined for all r ≥ 1/α0 and bounded as r → ∞.

Proposition 4.3. For any µ close to zero and ω close to ω∗, and for any
0 < m < ∞, there is α0 > 0 such that (87) possesses a Cm global center-stable

manifold W̃cs
+ with global semi-flow Φ̃cs

+(r), r ≥ 0, see Definition 4.2. Moreover,

W̃cs
+ is tangent to (Ec

+ ⊕ Es
+) × R at u = 0, α = 0, and µ = 0, ω = ω∗ in the

extended phase space Y × R. Also, (u = 0, α = 1/r∗) ∈ W̃cs
+ , and the tangent

space at this point is (Es(r∗) ⊕ Ec(r∗)) × R for µ = 0. Also, W̃cs
+ is δ′-close to

Y × {|α| ≤ α0} in the Cm-topology.

The manifold W̃cs
+ is invariant and the semi-flow Φ̃cs

+(r) is equivariant under
the time-shift symmetry γθ.

Proof. The proof is similar to the proof for center-stable manifolds in ordinary
differential equations in [Van89]. Modifications for infinite-dimensional problems
as considered here are given in [VI91] in a very general context. However, the
discussion in [VI91] restricts to center manifolds. We give a short outline of the
proof for center-stable manifolds, here.

We modify the equation for α as in the proof of Proposition 3.4 to α′ =
−χ(α/δ′)α2 where χ is the smooth cut-off function from above, and obtain an
equation which is a δ′-small perturbation of the linearized asymptotic equation

(88) u′ = A(∞;ω)u, α′ = 0.

This linear equation allows for a spectral decomposition in a center-stable subspace
Ẽcs := (Es ⊕Ec

+)×R, and an unstable subspace Ẽu := Eu
+ ×{0}. We write P̃ cs for

the continuous projection on Ẽcs along Ẽu. Solutions of (88) are given (explicitly)
from the decomposition into Fourier subspaces (83). The initial value problem

to (88) for initial data ũ(0) = ũ0 can be solved for (u0, α) ∈ Ẽcs for r > 0 and we

denote the linear solution operator by (u(r), α(r)) = Φ̃cs
+(r)ũ0. For (u0, α) ∈ Ẽu,

the initial value problem can be solved for r < 0 and we denote the linear solution
operator by (u(r), α(r)) = Φ̃u

+(r)ũ0. There are ηu > 0, C > 0, and for any δ > 0,
there is C ′ > 0 such that

|Φ̃cs
+(r)| ≤ C ′eδr, r ≥ 0;

|Φ̃u
+(r)| ≤ Ceηur, r ≤ 0

as operators in Ỹ = Y × R. The solutions of (87) with weak exponential growth
as r → ∞ are now found as solutions of a variation-of-constant formula. Write
ũ = (u, α) ∈ Y ×R, and

G̃(u,w, α) =
(

0,−D−1Fmod(u;µ),−χ(α/δ′)α2
)T
.

Then consider the fixed point equation

ũ(r) = Φ̃cs
+(r)P̃ csũ0 +

∫ r

0

Φ̃cs
+(r−s)P̃ csG̃(ũ(s))ds+

∫ r

∞
Φ̃u

+(r−s)(1− P̃ cs)G̃(ũ(s))ds
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in the space C0
η (R+, Ỹ ) with norm

|ũ(·)| := sup
r≥0

e−ηr‖ũ(r)‖Ỹ .

With m being the degree of differentiability in the proposition, we choose ηu >
mη > mδ and δ′ small. Then the right side of the variation-of constant formula,
viewed as an operator on C0

η(R+, Ỹ ), defines a contraction. The unique fixed point

ũ(r), depending on the parameter ũ0 = P̃ csũ(0), gives W̃cs
+ as the set of points ũ(0),

with |α| ≤ α0 = δ′. The nonlinear semi-flow Φcs on W̃cs
+ is defined as associating

the solution ũ(r) to the initial value ũ0. Differentiability and invariance properties
follow as in the case for ODEs; see for example [Van89]. Differentiability with
respect to ω can be seen by rescaling the equation as in Chapter 2, Section 4
and incorporating ω in the parameter µ. Tangent spaces are transported by the
linearized equation at u = 0, which possesses unique r-dependent center-stable
subspaces Ecs

+ (r), as mentioned in Section 1.

Remark 4.4. Viewing (88) as a small perturbation of its nonautonomous lin-

earization ur = A(r;ω)u, we may actually construct W̃cs
+ on any fixed but finite

domain |α| ≤ α0 < ∞, α0 not necessarily small. We therefore replace Φ̃cs and Φ̃u

by their nonautonomous counter parts, the evolution operators to (88). The center-
stable manifold is then again constructed as a fixed point of the above variation-of-
constant formula. This is a nontrivial extension of Proposition 4.3, since we cannot
globalize locally invariant manifolds by means of transporting them with a flow, as
the initial value problem is ill-posed and solutions to the initial-value problem typi-
cally do not exist.

As a next step, we construct Wcu
− . We start analyzing the linearized equation

v′ = w(89)

w′ = −n− 1

r
w −D−1 (−ω∂tv + ∂UFmod(0; 0)v) ,

or, in spatial time τ = log r,

v̇ = eτw(90)

ẇ = −(n− 1)w − eτD−1 (−ω∂tv + ∂UFmod(0; 0)v) .

Lemma 4.5. Equation (90) possesses an exponential dichotomy with rates ηs =
n − 1 and ηu = 0 on τ ∈ (−∞, τ0], for any τ0 < ∞. More precisely, there are
constants Cs and Cu and strongly continuous linear evolution operators Φs

−(τ, σ)
for τ0 ≥ τ ≥ σ and Φu

−(τ, σ) for τ0 ≥ σ ≥ τ , such that Φs
−(·, σ)v and Φu

−(·, σ)v are
solutions of (90), for any v ∈ Y . Moreover, Φs

−(σ, σ)v + Φu
−(σ, σ)v = v and

‖Φs
−(τ, σ)‖L(Y,Y ) ≤ Cse−(n−1)|τ−σ|, τ0 ≥ τ ≥ σ,

‖Φu
−(τ, σ)‖L(Y,Y ) ≤ Cu, τ0 ≤ τ ≤ σ.

Proof. Since the linearized equation decouples into an infinite product of ordinary
differential equations for the Fourier modes, it suffices to show the claim for each

Fourier mode ei`t, with `-uniform constants C
s/u
` .

Therefore, consider

v̇` = eτw`(91)

ẇ` = −(n− 1)w` − eτD−1
(

−ωi`v` + ∂UFmod(0; 0)v`
)

,
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on C2N with norm |(v`, w`)|2` := (|`|+1)|v`|2+|w`|2. For each ` fixed, (91) possesses
an exponential dichotomy as claimed, since the asymptotic equations v̇` = 0, ẇ` =
−(n−1)w` possess exponential dichotomies and the coefficients of the perturbations
decay exponentially in τ for τ → −∞. We have to consider |`| ≥ `0 large and
show uniformity of constants with respect to the norm | · |`. We may assume

` > 0, the other case being complex conjugate. We set ṽ` =
√
`v` such that

|(v`, w`)|` ' |(ṽ`, w`)| define uniformly equivalent norms. We obtain

d

dτ
ṽ` =

√
` eτw`(92)

d

dτ
w` = −(n− 1)w` − eτD−1

(

−ωi
√
`ṽ` +

√
`
−1
∂UFmod(0; 0)ṽ`

)

.

The term involving F is a small perturbation for ` large, with uniform exponential
decay in τ , and by robustness of dichotomies [Cop78, PSS97], it is sufficient to
consider

d

dτ
ṽ` =

√
`eτw`(93)

d

dτ
w` = −(n− 1)w` − eτD−1(−ωi

√
`ṽ`).

We write (ṽ`, w`) = ((ṽ`
1, . . . , ṽ

`
N )T , (w`

1, . . . , w
`
j)

T ) ∈ CN × CN , expliciting the

N species of the reaction-diffusion system. Now, in (93), the equations for the
individual species (ṽ`

j , w
`
j) decouple and we can consider each component separately.

We scale v̂`
j = (dj/ω)−1/2i1/2ṽ`

j , where dj is the j’th entry in the diffusion matrix

D, and translate σ = τ + log
√
`− log

√

dj/ω to obtain

d

dσ
v̂`

j = i1/2eσw`
j(94)

d

dσ
w`

j = −(n− 1)w`
j + i1/2eσ v̂`

j .

We have to show that there exist exponential dichotomies on σ ∈ (−∞, log
√
`).

We show that the `-independent equation (94) indeed possesses an exponential di-
chotomy on the entire real line R, which, together with the previous considerations,
proves the lemma.

First, observe that (94) possesses an exponential dichotomy on R−, since we
recover a linear equation with eigenvalues 0 and −(n − 1) for σ → −∞. Also,
note that (94) does not possess nontrivial, bounded solutions. Indeed, any solution
of (94) is a solution of v′′ + (n − 1)v′/r − iv = 0. Solutions, bounded for r → 0,
are Bessel functions of the first kind with complex argument, which are known to
grow exponentially as r → ∞.

It therefore suffices to show that (94) possesses an exponential dichotomy on
R+. We first consider (94) in the new time-variable s = eσ:

d

ds
v̂`

j = i1/2w`
j(95)

d

ds
w`

j = −n− 1

s
w`

j + i1/2v̂`
j .
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Since the asymptotic equation at s = ∞, d2

ds2 v̂
`
j = iv̂`

j possesses an exponential
dichotomy, we have an exponential dichotomy on s ≥ 1 for (95):

|Φ̃s(s1, s2)| ≤ Cse−
1
2
|s1−s2|, for s1 ≥ s2 ≥ 1

|Φ̃u(s1, s2)| ≤ Cue−
1
2
|s1−s2|, for s2 ≥ s1 ≥ 1.

Translating back to σ-time gives evolution operators

Φs/u(σ1, σ2) := Φ̃s/u(eσ1 , eσ2),

with exponential decay estimate

|Φs/u(σ1, σ2)| ≤ Cue−
1
2
|eσ1−eσ2 | ≤ Cue−c|σ1−σ2|,

where c = e−
1
2

min(σ1,σ2).
Summarizing, we have found exponential dichotomies for (91), uniformly in `.

Exponential decay of the nonautonomous part −eτD−1∂UFmod(0; 0)v`, also uniform
in `, implies that the exponential rates coincide with the rates −(n − 1) and 0,
predicted by the equation in τ = −∞. This proves existence of dichotomies with
exponential estimates as claimed.

We write Ecu
− (r) := Rg (Φu

−(log r, log r)) for the center-unstable subspace. By con-
struction, these subspaces are unique. They can be continued, using the flow in
the Fourier subspaces to τ ∈ R. The union of the center-unstable subspaces in the
extended phase space

⋃

r>0(E
cu
− (r), r) is denoted by Ẽcu

− .

Definition 4.6. We say a manifold M̃ ⊂ Y ×R is a Cm global center-unstable
manifold of (86), if M̃ ⊂ Y × {r ≤ r0} for some r0 > 0, and if there is a global

backward semi-flow Φ̃cu
− (r), r ≤ 0 on M̃, such that M̃ is backward invariant under

Φ̃cu
− , trajectories of Φ̃cu

− are solutions of (86), and M̃ contains all solutions of (86),
which are defined for all r ≤ r0 and bounded as r → 0.

Proposition 4.7. For any 0 < m < ∞, µ ∈ Rp, ω > 0, and r0 ∈ R+, there
is a Cm global center-unstable manifold W̃cu

− to the equilibrium u = 0, r = 0 in
equation (86), see Definition 4.6, which depends Cm on µ and ω. The manifold is
tangent to Ecu

− (r)×R at u = 0, 0 < r ≤ r0, and µ = 0, ω = ω∗, and it is δ′-close to

Ẽcu
− in the Cm-topology. Trajectories of the backwards semi-flow Φ̃cu

− on W̃cu
− yield

solutions of (86).

The manifold W̃cu
− is invariant and the semi-flow Φ̃cu

− (r) is equivariant under
the time-shift symmetry γθ.

In fact, all backward-trajectories of Φ̃cu
− are bounded and convergent, and all

bounded solutions of (86) on τ ∈ (−∞, log r0], r ≤ r0, are trajectories of Φ̃cu
− .

Proof. We use the information on the linearized problem from Lemma 4.5 to
set up a fixed point argument, similar to the proof of Proposition 4.3. However,
we construct the manifold in the phase space Y , not in the extended phase space
Y × R. We set

G(u,w, τ) =
(

0,−eτD−1(Fmod(u;µ) − ∂UFmod(0; 0)u)
)T
.

Any bounded solution u(τ) of (86) is a solution of the variation-of-constant formula

u(τ) = Φu
−(τ, τ0)u0 +

∫ τ

τ0

Φu
−(τ, σ)G(u(σ), σ)dσ +

∫ τ

−∞
Φs

−(τ, σ)G(u(σ), σ)dσ.
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Recall from Lemma 4.5 that the norm of the operators Φs
−(τ, σ) decays exponen-

tially in τ − σ > 0, and that the norm of the operators Φu
−(τ, σ) is uniformly

bounded in τ − σ < 0. We also have exponential decay of the nonlinearity G:

|G(u1(σ), σ) −G(u2(σ), σ)|Y ≤ O(δ′)eσ |u1 − u2|BC0((−∞,τ0],Y ).

With these ingredients, it is straight forward to show that the right side de-
fines a contraction on BC0((−∞, τ0], Y ). The unique fixed point u(τ ;u0) with
u0 ∈ Ecu

− (eτ0) defines the center-unstable manifold with center-unstable flow. Con-
vergence for r → 0 of individual trajectories is also an easy consequence of the
variation-of-constant formula, together with the above estimates.

Proof. [of Theorem 4.1] We define W̃c
glob = W̃cu

− ∩W̃cs
+ . We have to show transver-

sality of the intersection, which reduces to showing that

(i) Ecu
− (r) ∩ Ecs

+ (r) =: Ec(r) is of dimension dimEc
+(r);

(ii) Ecu
− (r) +Ecs

+ (r) = Y .

Step (i) follows as in the proof of Theorem 3.3, considering the linearized equation
for each Fourier mode separately. Bounded solutions only occur within the Fourier
subspace ` = 1.

We focus on (ii), next. We have to show that Ecu
−,`(r) and Ecs

+,`(r) are transverse
to each other, uniformly in ` for large `. However, for ` large, these subspaces are
close to Ecu

−,`(r) and Ecs
+,`(r), the corresponding subspaces for the slightly perturbed

equation (93)

d

dr
ṽ` =

√
`w`

d

dr
w` = −n− 1

r
w` −D−1

(

−ωi
√
`ṽ`
)

,

see Lemma 4.5 and its proof. Now, this equation was already shown to possess an
exponential dichotomy on R in Lemma 4.5. There, the equation was considered
in logarithmic spatial time τ = log r, which, however, does not alter the definition
of subspaces. This proves transversality, uniformly in ` and, with the previous
discussion, Theorem 4.1.

2.2. The asymptotic center manifold W̃c
+. For large radii, we can con-

struct an asymptotic center manifold W̃c
+ as in Chapter 3, Section 2.2.

Theorem 4.8. For each 0 < m < ∞, µ close to zero, and ω close to ω∗,
there exists a Cm-center manifold W̃c

+ for (85) near u = 0, α = 0, with local flow

Φ̃c
+. The center manifold W̃c

+ is tangent to Ec
+ × R in the extended phase space

(u, α) ∈ Y × R at the point u = 0, α = 0, and µ = 0, ω = ω∗.
Moreover, W̃c

+ contains all small bounded solutions: there are α0 > 0 and

δ′ > 0, such that, if |u(r)| ≤ δ′ for all r > 0 is a solution, then (u(r), 1/r) ∈ W̃c
+

for all r ≥ 1/α0.

The center manifold is invariant and the flow Φ̃c
+ is equivariant under the

action γθ of temporal time-shifts.

The construction is the same as in the proof of Theorem 3.7. We construct the
center manifold within Wcs

+ , where we can use the semi-flow Φ̃cs
+ to define the graph

transform.
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3. The reduced vector field for a Hopf instability

We derive the general normal form of the vector field on Wc
+ in case of a Hopf

instability (H).
First, consider the linear part. We choose coordinates (A,B) as in Lemma 2.30.

There are no constant terms for all α, since (A,B) ≡ 0 is a solution of the full
nonautonomous equation. For the linearized equation, Ec

+ is invariant. This can
be seen as in the proof of Lemma 3.9. Within Ec

+, α-dependence is as in the
stationary homogeneous instability, and we arrive at the expansion

Ar = B + O((|A| + |B|)3)(96)

Br = γ1(ω, µ)A− (n− 1)αB + O
(

(|A| + |B|)3
)

αr = −α2

with γ1 as in Proposition 2.32. Note that quadratic terms vanish due to the phase
invariance caused by the temporal time-shift symmetry.

Further exploiting the time-shift symmetry and normal form transformations
as described in Proposition 3.11, we are lead to the expansion

Ar = B + iAP1

(

|A|2, i(AB −AB), α;ω, µ
)

+ R1(A,B, α;ω, µ)(97)

Br = γ1(ω, µ)A− (n− 1)αB + iBP1

(

|A|2, i(AB −AB)2, α;ω, µ
)

+AP2

(

|A|2, i(AB −AB), α;ω, µ
)

+ R2(A,B, α;ω, µ)

αr = −α2.

Here, P1 and P2 are complex polynomials in their arguments, and the coefficients
depend smoothly on ω and µ. The full equation is invariant under reversibility
acting through r 7→ −r, α 7→ −α, B 7→ −B, and under time shift acting through
(A,B) 7→ (eiθA, eiθB). The remainder terms Rj satisfy

Rj(A,B, α;ω, µ) = O
(

(|A| + |B|)m + |α|m(|A| + |B|)3
)

.

Expanding and collecting the leading order terms gives

Ar = B + O
(

(|A| + |B|)3
)

(98)

Br = (−µ1 + iω̂)A− (n− 1)αB + γ2A|A|2

+O



(|α| + |µ1| + |ω1|)|A|3 +

2
∑

j=0

|AjB3−j | + (|A| + |B|)5


 .

Here, we have set γ1 = −µ1+iω̂ with µ = (µ1, . . . , µp)
T and γ2 = ∂1P2(0, 0, 0; 0, ω∗).

As in Chapter 2, Section 4, we have dω̂
dω 6= 0 in ω = ω∗, µ = 0. Scaling A = |µ1|1/2Ã,

B = |µ1|B̃, r = |µ1|−1/2r̃, α = |µ1|1/2α̃, and ω̂ = |µ1|ω̃ gives

Ãr̃ = B̃ + O
(

|µ1|1/2
)

(99)

B̃r̃ = (±1 + iω̃)Ã− (n− 1)α̃B̃ + γ2Ã|Ã|2 + O
(

|µ1|1/2
)

.

If γ2 = 0, we assume ∂1P2(0, 0;µ, ω∗) = µ2 + iµ3, a generic assumption up to dif-
feomorphic transformations in parameter space µ, ω. We then scale µ2 = µ̃2|µ1|1/2,

µ3 = µ̃3|µ1|1/2, A = |µ1|1/4Ã, B = |µ1|3/4B̃, x = |µ1|−1/2x̃, and |µ1|ω̃ = ω̂ to
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arrive at

Ãr̃ = B̃ + O
(

|µ1|1/2
)

(100)

B̃r̃ = (±1 + iω̃)Ã− (n− 1)α̃B̃ + (µ̃2 + iµ̃3)Ã|Ã|2 + γ3Ã|Ã|4

+O
(

|µ1|1/2
)

with 2γ3 = ∂2
1P2(0, 0, 0; 0, 0).

4. Heteroclinics in the reduced equation

We are interested in solutions which converge for r → ∞ to plane-wave solutions
U(t, r) ∼ U0(ωt− kr), with U0 being 2π-periodic. In our reduced systems (99) and

(100), at α = 0, we find these waves in the form Ã(ω;µ)eik̃r̃, where ω = ω(k̃;µ).
For our purposes, the most important quantity associated to these plane waves

is the group velocity cg(k) = dω(k̃)

dk̃
. Heteroclinics converging to these plane-wave

solutions represent target patterns in the full reaction-diffusion system, where far
from the center, we see concentric circles, travelling with constant speed away
from the center or towards the center. Locally, far away from the center, the waves
resemble plane waves since the curvature of the circle is small. If the group velocity,
associated to these plane waves is positive, then perturbations are transported away
from the center and we think of the center as a source for the outgoing waves. If the
group velocity is negative, then information is transported towards the center and
we think of the target patterns as sinks, where incoming concentric waves collide
and annihilate.

In this section, we address the question of existence of target patterns in the far-
field equation, on W̃c

+, only. Persistence and matching with the center is postponed
to Section 5.

The simplest example of a supercritical nondegenerate Hopf bifurcation (H)
does not give rise to target patterns, where the center acts as a source for the
outgoing waves — at least not close to the variational case of the real Ginzburg-
Landau equation [KH81b]; see however Chapter 5, Section 3. On the other
hand, shock-type defects, where concentric waves collide in the center were found
in [Gre78]. Both studies are perturbation analyses around the trivial constant

solution Ã(r̃) ≡ 1/
√
γ2 in the limit Im γ2 = 0, Re γ2 > 0, and ω̃ = 0, and µ1 > 0

in (99),

Ãr̃r̃ = −n− 1

r̃
Ãr̃ − Ã+ Re γ2Ã|Ã|2.

We restate the existence of target sinks.

Proposition 4.9. [Target sinks] [Gre78] For Im γ2 and ω̃ sufficiently small,

there exists a solution Ã(r̃) of equation (99) with µ1 = 0, such that A(r) ∼
Ã∗(k̃)eik̃r̃ = Ã(r̃; k̃), Ã∗ =

√

(1 − k2)/γ2, as r̃ → ∞ is asymptotic to a plane

wave A(r; k̃) with negative group velocity dω̃/dk̃ < 0. The solution is a transverse
heteroclinic orbit of the non-autonomous radial dynamics.

The group velocity dω̃/dk̃ here is meant as the derivative of the nonlinear

dispersion relation ω̃(k̃). It could also be computed from the linear dispersion
relation in the linearization about the plane wave [SS00c]. Note that there is a

whole family of sinks, parameterized by the asymptotic wave number k̃.
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The second example exhibits a mechanism for the creation of target patterns,
where the asymptotic wave trains have positive group velocity, that is, where they
transport perturbation away from the center. The idea is to start with a one-
dimensional, x ∈ R, coexistence pattern, see Chapter 2, Sections 3.5 and 4.3. Al-
though the central argument is global in nature, we illustrate it in the case of the
degenerate Hopf bifurcation, equation (100).

We assume that, for a fixed value of µ̃2 = µ̃∗
2, there exists a coexistence pattern

Ã(r̃;ω) in the one-dimensional (asymptotic, r → ∞) problem, that is a solution

to (100) with α̃ ≡ 0 and Ã(r̃;ω) → 0 for r → −∞ and Ã(r̃;ω) → Ã∗eik̃∗r̃ for
r̃ → ∞. In Chapter 2, Section 4, we already observed that coexistence patterns
are codimension-one phenomena and proved existence in a particular parameter
regime.

Furthermore, assume that the heteroclinic orbit is transverse in c and in µ̃2

as parameters. In other words, the speed c crosses zero with non vanishing speed
when µ̃2 is varied about µ̃∗

2; see Remark 2.34.
We call a heteroclinic orbit satisfying these condition a transverse coexistence

pattern.

Proposition 4.10. [Target sources in degenerate Hopf] Assume that there
exists a transverse coexistence pattern for the asymptotic equation, r̃ = ∞, of (100)
at µ̃2 = µ̃∗

2. Then for all µ̃2 close to µ̃∗
2, there exists a heteroclinic in the reduced,

truncated system on the center manifold if, and only if, M(µ2 − µ∗
2) > 0. The

coefficient M is given as the product of the two Melnikov integrals with respect to c
and µ̃2. The heteroclinics constructed are transverse in radial dynamics.

Remark 4.11. The sign of the product of the two Melnikov functions is precisely
the sign of the derivative dc/dµ̃2. In particular, the condition for existence gives
coexistence patterns in the region of parameter space where c would be positive, that
is, where the homogeneous state which occupies the center of the target pattern would
spread into the outgoing waves in one spatial dimension. The physical interpretation
can be formulated as a positive interfacial energy, preventing the homogeneous state
from spreading into the outgoing waves.

Proof. [of Proposition 4.10] The proof is similar to the proof of Proposition 2.24;

see also Chapter 2, Figure 4. We denote by W̃ u
+ the center-unstable manifold of

zero in the extended phase space (Ã, B̃, α̃) and by W̃ s
+ the center-stable manifold

of the plane wave Ã∗eik̃∗r̃. The condition on transversality in c is equivalent to
transversality with respect to α̃ since α̃′ = −α̃2 is quadratic and therefore α appears
as a constant parameter in the linearization along the heteroclinic, at the same
position as the wave speed c. Therefore, W̃ u

+ and W̃ s
+ intersect transversely in

the extended phase space. The sign condition in the Proposition ensures that this
intersection persists at some parameter value α̃∗(µ2) > 0. By the λ-Lemma, the

shooting manifold W cu
− is exponentially close in 1/α̃∗ to W̃ u

+ and therefore intersects

W̃ s
+ transversely, at a position exponentially close to α∗(µ2), in the flow-invariant

subspace α > 0.

5. Persistence

We argue that the solutions in Propositions 4.9 and 4.10 persist for the full
reaction-diffusion system.
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Theorem 4.12. Consider a linearly generically unfolded Hopf instability (H)
with a single parameter µ and with a cubic coefficient γ2 = 1 + iγi

2 from (99)
with positive real part, that is, periodic plane waves exist in the region where the
trivial state is unstable. Then the target sinks found in the universal equation (99),
Proposition 4.9, give rise to a family of target sinks for the full reaction-diffusion
system in the region µ = µ1 > 0.

The solutions in the theorem correspond to radially symmetric, temporally
periodic target sinks in the full reaction-diffusion system. They bifurcate from a
homogeneous equilibrium state when it undergoes a Hopf instability (H). Existence
is guaranteed for small values γ i

2, which would correspond to almost equal amounts
of linear and nonlinear dispersion in a complex Ginzburg-Landau equation. Phe-
nomenologically, concentric circles of waves with large wavelength shrink towards
the origin, where they collapse.

Proof. Similarly to the proof of Theorem 3.18, we have an expansion of the
matching subspace W cu

− for each nonzero value of α

W cu
− =

{

(A,B) =
(

a, ψu
−(a)

)

; a ∈ C, |a| ≤ δ−
}

,

with ψu
−(a) = O(|a|2 + |µ| + |ω|).

By the transversality of the heteroclinic in the universal equation (99), with
µ1 = 0, and by the λ-Lemma, we have, for any ε > 0, the expansion

W s
+ =

{

(Ã, B̃) = (eiϕa∗, b) + O(r̃1−ε); b ∈ C, |b| ≤ δ+; 0 ≤ ϕ < 2π
}

,

in the scaled coordinates. The constant a∗ is given as the value of the target sink
from Proposition 4.9 in r = 0. The constant δ+ can be chosen arbitrarily large by
decreasing r̃. In the original coordinates this gives

W s
+ =

{

(A,B) =
(

eiϕa∗|µ|1/2 + O(|µ|3/2−ε), |µ|b
)

; b ∈ C, |b| ≤ δ+; 0 ≤ ϕ < 2π
}

.

The first matching equation gives

a = |µ|1/2eiϕa∗ + O(|µ|3/2−ε).

Plugging the result into the equation for B gives

|µ|b = ψu
−(|µ|1/2eiϕa∗ + O(|µ|3/2−ε)) = O(µ).

With the implicit function theorem, we obtain a unique solution b(ϕ;µ) for µ > 0
small.

The persistence of coexistence patterns, Proposition 4.10, is conceptually simpler.
By hyperbolicity of the zero-solution, the matching subspace W cu

− is transverse to
the center-stable manifold W s

+ of the origin and we can repeat the arguments from
the proof of Proposition 4.10 to find

Theorem 4.13. Consider a linearly generically unfolded Hopf instability (H)
with degenerate cubic coefficient γ2 = 0. The target sources found in the univer-
sal equation, Proposition 4.10, give rise to a family of target sources for the full
reaction-diffusion system. In particular, target sources exist in a region in param-
eter space with nonempty interior.

We did not make the conditions which guarantee the existence of target sources
for the full reaction-diffusion system explicit. The situation we unfolded was codi-
mension 4, with vanishing µ at the instability threshold, vanishing cubic terms
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γ2 ∈ C and zero imaginary part of the quintic coefficient. These codimension-4
points in the space of reaction-diffusion systems lies in the closure of reaction-
diffusion systems which possess target sources, that is, solutions which in the far-
field consist of equidistantly spaced concentric circles, propagating away from the
center with constant, positive phase and group velocity.





CHAPTER 5

Discussion

The mere existence of radially symmetric solutions, the major topic of this
work, has provided us with some of insight into the dynamics of reaction-diffusion
systems on Rn. Nevertheless, the general method presented here, might well serve
as a tool for more delicate questions in this context. We outline several extensions
and point out limitations of our approach. As a first topic, we discuss stability, in
particular spectral bifurcation problems, Section 1. We then point out how to find
non radially symmetric patterns, Section 2, exhibiting in particular limitations of
the approach via radial dynamics. In the last part, Section 3, we discuss how a
small hole might affect the bifurcation analysis. Emphasis is laid on the existence
of target sources for certain Robin boundary conditions. We conclude with a short
summary, directing us towards a number of open questions.

1. Stability

We illustrate a typical stability analysis in showing instability of patterns in
two examples. First, we characterize the critical spectrum of localized humps in
an instability of type (O), found in Theorem 3.18; see Section 1.1. We then argue
that coexistence patterns, like the ones found in Theorems 3.19 and 4.13, typically
possess one unstable eigenvalue, Section 1.2. The associated eigenfunction mimics
radial motion of the interface between the two stable states.

For the stability analysis of some of the one-dimensional patterns, we refer
to [GL]. In case (O), the spectra of bifurcating, stationary solutions can actu-
ally be computed from a scaled, reduced problem. We find the stability properties
known from scalar reaction-diffusion systems. In particular, only monotone solu-
tions, namely the coexistence patterns and the travelling waves in case of a cusp,
Proposition 2.24 and Remark 2.25, are stable. Spatially periodic solutions, even
those, which are close to the coexistence patterns in the phase space of the reduced
system, Chapter 2, Figure 4, are unstable due to continuous spectrum in the right
half plane.

We conjecture that there are stable and unstable coexistence patterns in case
of a weakly subcritical Turing instability, Chapter 2, Section 3.5. Neglecting nona-
diabatic effects, we have a circle of heteroclinics, parameterized by complex phase.
Within the approximation of the cubic-quintic Ginzburg-Landau equation, this cir-
cle is stable, since it is actually a local minimizer of the Ginzburg-Landau energy

J [A] =

∫

x

(

1

2
|Ax|2 +

1

2
|A|2 +

1

4
νMaxw|A|4 +

1

6
|A|6

)

dx.

Adding nonadiabatic effects, we expect that the circle breaks up, with two remain-
ing heteroclinics, one of which we expect to be stable, the other unstable.

73
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Stability questions for the complex cubic-quintic Ginzburg-Landau equation are
largely open. We mention [KS98], [vSH92], [KR00] and the references therein,
for some results in this direction. Nevertheless, we expect the coexistence patterns,
found in Chapter 2, Section 4.3, and the travelling waves described in Remark 2.34,
to be stable, as perturbations from stable coexistence patterns in the variational
case of real cubic and quintic coefficients. The general procedure for a rigorous
stability analysis of time-periodic patterns has been outlined in [SS00c, SS00d].
In particular, group velocities of the travelling waves play a crucial role for the
location of the spectrum.

We return to radially symmetric patterns and explain in more detail the main
ideas. The key to a stability analysis is a description of the spectrum of the lineariza-
tion. Given the bifurcating, radially symmetric solution U∗(r;µ), we investigate the
linearized operator

L∗
µU = D4U + ∂UF (U∗(r;µ);µ)U.

We consider L∗
µ on the space of square-integrable functions L2(Rn,RN ), with do-

main of definition H2(Rn,RN ). We say, a complex number λ belongs to the spec-
trum spec (L∗

µ), if λ−L∗
µ does not possess a bounded inverse. We define the point

spectrum specpoint (L∗
µ) ⊂ spec (L∗

µ) as the subset of λ ∈ C, where λ − L∗
µ is Fred-

holm with index zero, that is, the range is closed and the dimensions of kernel
and cokernel coincide. The complement specess (L∗

µ) := spec (L∗
µ) \ specpoint (L∗

µ)
is called the essential spectrum. By robustness of Fredholm properties and indices
under compact perturbations, we have the following lemma.

Lemma 5.1. Assume that U∗(r;µ) → U∞(µ) as r → ∞. Then

specess (L∗
µ) = specess (L∞

µ ),

with

L∞
µ U = D4U + ∂UF (U∞(µ);µ)U.

Furthermore,

specess (L∞
µ ) =

{

λ | det (−Dk2 + ∂UF (U∞(µ);µ) − λ)) = 0 for some k ∈ R
}

.

Although, in particular situations, it might turn out to be difficult to actually
compute the essential spectrum, the analytically harder problem is to locate and
track the point spectrum.

Lemma 5.2. [SS00d, Lem. 5.7] Assume that λ ∈ specpoint (L∗
µ). Then there

exists a smooth eigenfunction Ue(x), which is exponentially localized |U(r)| ≤ e−η|x|

for some η > 0.

In particular, λ belongs to the point spectrum if, and only if, there exists
an eigenfunction in L2. Restricting to x ∈ R2 and introducing polar coordinates
(r, ϕ) and angular Fourier decomposition, we find that the point spectrum consists
precisely of those values of λ, for which there exists a k ∈ R and a bounded solution
Ue(r) to

D(U ′′ +
1

r
U ′ − k2

r2
U) + ∂UF (U∗(r;µ);µ)U = λU.

For µ = 0, U∗(r;µ) ≡ 0 and the spectrum consists entirely of essential spectrum.
The heart of the spectral analysis now consists in the location of eigenvalues popping
out of the essential spectrum for µ > 0 small.
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1.1. Instability in the fold. We illustrate the bifurcation problem for the
eigenvalues in the case of a fold in two spatial dimensions, n = 2. Recall from
Theorem 3.18, that for µ > 0, say, a stationary, radially symmetric, localized
solution U∗(r;µ) = O(µ1/2) of the reaction-diffusion system (2) bifurcates from the
trivial solution U ≡ 0. Using perturbation arguments for the linearization about
the trivial state, we can conclude that Reλ ≤ Cµ1/2 for some constant C and
all λ ∈ spec (L∗

µ). From Lemma 5.1, it is not hard to conclude that the essential
spectrum is strictly contained in the open left half plane. We still have to locate
eigenfunctions. We look for eigenfunctions as bounded solutions to

U ′ = V(101)

V ′ = −1

r
V +

k2

r2
U +D−1 (−∂UF (U∗(r;µ);µ)U + λU) .

This linear differential equation can be reduced, to a center manifold W̃c
+ in the

same fashion as the nonlinear problem in Theorem 3.7. Since the equation is linear,
we do not need cut-off functions. We include the eigenvalue parameter λ as an
additional parameter. Since the equation is analytic in λ, the asymptotic center
manifold W̃c

+ is also analytic in λ. Substituting µ = ε2, we find that the equation
and the invariant manifolds are smooth in ε. In the construction of the matching
manifolds W̃c

+, we exploit the fact, that in ε = 0, λ = 0, and k = 0, equation (101)
coincides with the linearization of the nonlinear problem, equation (46). For k 6= 0,

the construction of W̃cu
− requires a slight modification. In logarithmic spatial time

τ = log r, we find

Uτ = W

Wτ = k2U + r2D−1 (−∂UF (U∗(r;µ);µ)U + λU)

rτ = r.

Here, the equilibrium U = W = 0, r = 0, is hyperbolic with N + 1-dimensional
unstable manifold W̃u

−, which contains precisely the solutions which are bounded,

actually O(rk), as r → 0. We use this unstable manifold instead of W̃cu
− in Proposi-

tion 3.5. Next, the center-stable Ecs
+ and center eigenspaces Ec

+ at r = +∞ do not

depend on k, and the construction of W̃cs
+ , Proposition 3.4 and W̃c

+ is the same for
all k. Perturbation arguments as in the proof of Theorems 3.3 and 3.7 then finish
the construction of the asymptotic center manifold W̃c

+.
On the center manifold, we introduce coordinates (A,B) as in Lemma 3.9.

Rescaling the reduced equation on W̃c
+ according to r = µ−1/4r̃, λ = µ1/2λ̃, U∗ =

µ1/2Ũ∗, A = µ1/2Ã, and B = µ3/4B̃, we find to leading order the linearization of
the universal equation

Ãr̃ = B̃(102)

B̃r̃ = −1

r̃
B̃ +

k2

r̃2
Ã− 2Ũ∗Ã+ γLλ̃Ã+ O

(

µ1/2(|Ã| + |B̃|)
)

,

with the additional terms γLλ̃Ã accounting for the temporal eigenvalue λ, and k2

r̃2 Ã
for the possible angular dependence of eigenfunctions. The coefficient γL is obtained
by projecting (0, D−1U0)

T on the center eigenspace, spanned by {(U0, 0)T , (0, U0)
T }

along the spectral complement. Here, U0 is a vector in the kernel of ∂UF (0; 0); see
also Lemma 2.11. With U∗

0 as the vector in the kernel of the adjoint ∂UF
∗(0; 0)
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and normalization (U0, U
∗
0 ) = 1, we obtain

γL = (U∗
0 , D

−1U0) > 0,

since D > 0 is positive.
If we set µ = 0 in (102), we find a universal equation, which is simply the

linearization about the single hump in the equation ut = 4u−1+u2. In particular,
the only bounded solutions for values of λ̃ in the right complex half plane occur for

• k = 0, λ̃ = λ0 > 0 with positive eigenfunction;
• k = ±1, λ̃ = 0 from translation of the pattern, a double eigenvalue.

More generally, (102) defines for each fixed k a self-adjoint Sturm-Liouville eigen-
value problem on the unbounded half line r̃ > 0. Eigenfunctions above the essential
spectrum are simple and ordered by the number of zeroes.

The persistence problem for k = 0 is similar to Theorem 3.18. The matching
problem gives a linear equation with coefficients, which are analytic in λ and smooth
in

√
µ. For λ not in the spectrum of the universal, scaled equation, we find the

unique, trivial zero-solution. Close to λ =
√
µλ0, we find nontrivial solutions to

leading order as zeroes of the determinant of the linear operator in the matching
problem. Actually, simple eigenvalues correspond to simple zeroes and persist by
the implicit function theorem.

For k 6= 0, the leading eigenfunctions are generated by translation and the
eigenvalue λ = 0 is an eigenvalue for the full system. More generally, the persistence
problem can be treated as in the case k = 0, only using slightly different coordinates
r = eτ , Aτ = B, near r = 0:

Aτ = B, Bτ = k2A+ O(r2), rτ = r.

The origin A = B = 0, r = 0 is hyperbolic and we find expansions for the matching
subspace W cu

− of the form

W cu
− (r) = W u

−(r) =
{

(A,B) = (a, ka) + O(r2); a ∈ R
}

.

The matching procedure with the so-defined matching subspace W cu
− is the same

as in the case of k = 0. The simple eigenfunctions persist as nontrivial, transverse
intersections of the matching subspaces in the parameter λ.

1.2. Instability of coexistence patterns. Beyond local bifurcations, we
have seen that coexistence in one space dimension for a specific parameter value
typically (two Melnikov integrals are supposed to be nonzero) gives coexistence
patterns in higher space dimension for an open set of parameter values. The effect
was illustrated in case of a cusp, where stable, homogeneous equilibria may coexist,
and in case of a degenerate Hopf bifurcation, where stable homogeneous equilibria
may coexist with wave-trains, travelling away from the interface. We argued that
interfacial energy balanced the energetic difference between the two different states,
which is responsible for the nonzero speed of propagation for a detuned parameter
value in one space dimension. The argument suggests that coexistence patterns
constructed in this fashion are unstable. We outline here, how to characterize this
instability mechanism as an isolated, unstable eigenvalue in a bifurcation analysis.

For convenience, consider the case of a stationary, homogeneous instability
(O), with a cusp in the kinetics, Theorem 3.19. In the extended phase space, multi-
dimensional coexistence patterns arise in a heteroclinic bifurcation; see Chapter 3,
Figure 3. Most of the arguments are similar in case of a degenerate Hopf bifurcation.
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The proof actually does not exploit smallness of the patterns and applies more
generally to coexistence patterns in reaction-diffusion systems.

Emphasizing the general nature of this bifurcation, we introduce a short nota-
tion. Denote by z ∈ [0, 1] the compactified radial “time variable”, with z = 1− 1/r
for r → ∞ and z = r for r → 0. Also, let Y denote the state variables (A,B)

near r = ∞ and (rA, rB) near r = 0 and let Ỹ = (Y, z). Radial time is scaled like
r = eτ near r = 0 and r = τ near r = ∞. The dynamics can then be written in the
compact for Ỹ ′ = G(Ỹ ).

At bifurcation we have two heteroclinic orbits in the extended phase space q0(τ)
and q1(τ), with

q0(τ) → p0, for τ → −∞, q0(τ) → p1, for τ → +∞

and

q1(τ) → p1, for τ → −∞, q1(τ) → p2, for τ → +∞
with p0 = 0, p1 = (Y = 0, z = 1), and p2 = (py, 1). Here, p0 denotes the center of
the multi-dimensional pattern, p1 denotes the inner state in the coexistence pattern,
and py denotes the outer stable state. The first heteroclinic is actually the trivial
connection Y = 0 from z = 0 to z = 1. The second heteroclinic q1 denotes the
one-dimensional coexistence pattern, as found in Proposition 2.24, for example.
For nearby parameter values, we find heteroclinics q(τ) connecting p0 to p2, see
Proposition 3.16 and Theorem 3.19.

We address stability of the heteroclinics q(τ), next. For the linearized stability
of q0 and q1, we linearize the equation about these heteroclinics, including the
spectral parameter λ. We find two linear equations for Ỹ

(103) Ỹ ′ = G′(q0(τ);λ)Y, and Ỹ ′ = G′(q1(τ);λ)Y.

The first equation in (103) does not possess nontrivial bounded solutions for λ
close to zero since the first state was assumed to be stable. The second equation
possesses a bounded solution for λ = 0 which is induced by spatial translation of
the coexistence profile. We are interested in nontrivial bounded solutions for the
linearization about q(τ)

(104) Ỹ ′ = G′(q(τ);λ)Y.

In particular, we would like to recover a radially symmetric eigenfunction to an
eigenvalue λ close to zero, which resembles the translational eigenfunction, λ = 0
of q1.

A similar problem was studied in [SS00a]. Given the algebraic multiplicities
`1 and `2 of a possible eigenvalue λ for the individual heteroclinics q0 and q1, it
is shown there, that the sum of the algebraic multiplicities to all eigenvalues λ′

for the linearization (104) about the coexistence profile q(τ) in a sufficiently small
neighborhood of λ is the sum `1 + `2.

For the problem under consideration here, this implies that the zero eigenvalue
corresponding to translation of the interface continues to a unique simple eigenvalue
with radially symmetric eigenfunction in a neighborhood of zero for the coexistence
pattern. The motion in the direction of this slow eigenspace corresponds to growing
or shrinking of the region occupied by p0, when the initial interface is perturbed.
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The interesting question now is, whether this unique critical eigenvalue is ac-
tually stable or unstable. A more detailed perturbation analysis shows that, in ac-
cordance with the physical interpretation, the eigenvalue is always unstable, here;
see also Remark 4.11.

The analysis can be extended to oscillatory coexistence patterns. the transla-
tion eigenvalue of the asymptotic coexistence pattern is embedded in the essential
spectrum, but not contained in the absolute spectrum due to the nonvanishing group
velocity of the outgoing periodic waves; see [SS00b, SS00c, SS00a] for the defi-
nition of the absolute spectrum, spectra of time-periodic patterns, and the relation
to group velocities.

2. Beyond radial symmetry

Radially symmetric patterns are the only localized solutions for a large class of
scalar elliptic equations [GNN97]. Proofs of this fact strongly exploit comparison
principles. The bifurcation results for elliptic systems presented here suggest that
in the case of a one-dimensional kernel, case (O), the scalar structure is recovered.
However, the uniqueness of the radially symmetric solutions from Theorem 3.18 in
the class of localized, not necessarily radially symmetric, functions remains an open
problem.

Dropping the assumption of spatial localization, many other patterns are found,
starting with solutions depending only on one spatial coordinate x1; see Chapter 2.
More interestingly, periodic arrangements of single hump patterns along lattices in
Rn can be found, following the arguments in [PSS97, LPSS00]. We outline the
strategy for two spatial dimensions x = (x, y). Suppose we are given a stationary,
localized, radially symmetric solution U(r) to our reaction-diffusion system. We
may then write the elliptic system as an ill-posed dynamical system in the x-
coordinate

Ux = V, Vx = −4yU +D−1F (U)

on the phase space (U, V )(·) ∈ H1(R,RN ) × L2(R,RN ). The radially symmetric
solution U(r) becomes a homoclinic orbit in x-dynamics. By rotational invariance,
it is actually a reversible homoclinic, that is, it is set-wise invariant under the invo-
lution (U, V ) 7→ (U,−V ). Restricting to even functions of y factors out the trans-
lational symmetry in the y-direction. If the generalized kernel of the linearization
about the single-hump consists precisely of x- and y-derivatives (as is the case for
the localized solutions from Theorems 3.18 and 3.19), the homoclinic is nondegen-
erate in the sense of [LPSS00, Hypothesis H4,(ii)]. A proof of this fact, exhibiting
the general relation between transversality (here, the nondegeneracy condition) and
the generalized kernel, can be found in [SS00e, Prop. 5.2]. From [LPSS00, Cor.
4], we may then conclude that the homoclinic is accompanied by periodic patterns
ULx

(x, y) with sufficiently large period Lx ≥ L∗
x in x [LPSS00, Cor. 4]. On an

interval of periodicity, the periodic patterns resemble the original pulse up to a
correction, which is exponentially small in the wavelength Lx.

We may now consider these x-periodic patterns as homoclinic orbits in y-
dynamics

Uy = V, Vy = −4xU +D−1F (U)

on even, L-periodic functions in x. Again, the homoclinics are nondegenerate and
accompanied by y-periodic patterns, with large period Ly ≥ L∗

y(Lx). A refinement
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of the above arguments shows that actually L∗
y can be chosen independently of Lx

large enough.
Summarizing, we find spatially periodic patterns U(x, y) = U(x + Lx, y) =

U(x, Ly + y) for all sufficiently large periods Lx, Ly; see Figure 1.

U

y

x

Figure 1. Localized solution, x-periodic, and x-y-periodic solu-
tions constructed in spatial dynamics.

Since the bifurcating single hump pattern is already unstable, these patterns
are also highly unstable in the full system. An analysis as in [SS00d] shows that
there is a two-torus of spectrum λ(γx, γy) with γx, γy ∈ S1 exponentially close to
the unstable eigenvalue λ∗0 of the single-hump pattern. However, reaction-diffusion
systems may also possess localized, stable solutions; see [Ni98, Tak97]. It is
then of high interest to determine the location of the two-torus associated to the
translation eigenvalue, because it decides on stability of the periodic pattern. In
both cases, the results in [SS00d] give formulas for the asymptotic location of this
two-torus, depending on spectral and scattering-type information of the single hump
pattern. We remark that the approach of considering dynamics on a spatial variable
transverse to a primary homoclinic has been exploited earlier in [HK95, HK96]
to find transverse modulation of a solution U of an elliptic equation depending only
on one spatial variable.

3. Boundaries and holes

In a domain Ω = |x| ≥ r∗, the bifurcation theory is very similar in spirit. In-
stead of solving a matching problem, we now have to match the stable subspace W s

+

with the subspace imposed by the boundary conditions. Neumann boundary con-
ditions imitate best the entire plane and the bifurcation results in case (O) and (H)
hold in this situation. It is then interesting to see how the matching condition gets
violated when we homotope the boundary conditions from Neumann to Dirichlet
according to (cos s)Ur +(sin s)U = 0. For s close to 0 we have the same result as for
Neumann boundary conditions. At some value of s, for Robin boundary conditions,
a bifurcation occurs because transversality between the subspace imposed by the
boundary conditions and W s

+ is violated. The bifurcation is typically a fold in case
(O).

Another interesting problem is the stability of the pattern in Ω. In particular,
the eigenvalues induced by the translational symmetry will typically leave the origin.
Stable and unstable patterns corresponding to a pattern which is pinned to the hole,
or which is repelled by the hole are possible: the saddle-node bifurcations, described
above, mark the transitions between these two types of patterns.
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On the other hand, boundary conditions may generate patterns which do not
exist in Rn. Target patterns, that is, time-periodic, radially symmetric patterns,
which resemble concentric waves travelling away from the center, are one typical
example. In [Hag81], a formal analysis shows that local inhomogeneities may
create target patterns.

We outline how to find target sources in the complement of a disc of diameter
r∗. We impose Robin boundary condition Ur = sU , s > 0, s � 1, in r = r∗ > 0.
We start with the complex Ginzburg-Landau equation, that we found in Chapter 4,
Section 3 as the universal, reduced equation for the far-field shape of the patterns:

A′ = B, B′ = −1

r
B − (1 + iω)A+ (1 + iγ)A|A|2.

The constant γ was computed as the cubic normal form coefficient of the re-
duced vector field. Choosing the free frequency parameter ω = γ, we find the
r-independent solution A = 1, B = 0. In r = ∞, the solution undergoes a re-
versible, SO(2)-equivariant, saddle-node bifurcation upon decreasing ω, where γ is
fixed. Associated with this bifurcation, we have a three-dimensional center manifold
in a neighborhood of r = ∞, A = 1, B = 0. Apart from the α = 1/r-direction, we
have the direction of the group orbit (i, 0) and the direction of the bifurcation (0, i).
In the saddle-node, two relative equilibria A(r) = Reikr, R > 0, are created with
R2 = 1 − k2, ω = γR2. The linearization in r = ∞ about the bifurcating relative
equilibria possesses one stable and one unstable eigenvalue, the trivial zero eigen-
value corresponding to complex rotational equivariance, and an eigenvalue close to
zero, associated with the bifurcation, whose sign is actually the sign of the group
velocity. Arguing as in Proposition 3.11 and Remark 3.12, one can show that the
part of the center manifold in the α = 0-subspace is smoothly fibered in the direc-
tion of time α. The bifurcation associated with varying ω is illustrated in Figure 2.

r

A,B / S1

Wcu (ω > γ) Ο(ω−γ)
Ο(ω−γ)1/2

-

Wcu (ω = γ)-

WRobin 
-

cg > 0

cg < 0

Figure 2. The asymptotic center manifold W s
+ is plotted, with

the free action of the rotations SO(2) factored out. The match-
ing subspaces W cu

− depending on ω and the transported boundary

conditions WRobin
− are shown relative to the equilibria in the α = 0-

subspace.

An explicit computation in terms of Bessel functions shows that the one-
dimensional strong stable manifold of the k = 0, ω = γ-equilibrium A = 1, B = 0
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on the center manifold crosses the two-dimensional matching manifold W cu
− trans-

versely upon varying ω. On the other hand, W cu
− transversely intersects the center-

stable manifold W cs
+ of A = 1, B = 0. For ω 6= 0, we therefore obtain unique

intersections of W cu
− with strong stable fibers within W cs

+ . However, the relative
equilibrium with positive group velocity is unstable within the asymptotic center
manifold and at distance O(

√
γ − ω), whereas the strong stable fiber, connecting to

W cu
− is based at the much smaller distance O(γ − ω). This explains the absence of

target sources in the full plane. Now, changing the boundary condition varies the
intersection base point of the fiber in W cs

+ which intersects W cu
− . If this base point

lies on the part of the center manifold with cg > 0, then varying ω will make this
base point become the relative equilibrium with positive group velocity for a certain
value ω = ω∗, again, since the equilibria bifurcate with amplitude O(

√
γ − ω).

In order to determine, which sign of s gives rise to target sources, that is,
positive velocity of the base point as described above, we have to investigate the
linearized equation about the solution A(r) = 1, which reads

A′′ +
1

r
A′ − (1 + iω)(A+ Ā) = 0.

In this linearized equation, the imaginary subspace is flow-invariant with solutions
A(r) = i and A(r) = i/r. In particular, a positive sign of A′ at r = r∗ gives a
positive sign for r → ∞, that is, positive group velocity. With Robin boundary
conditions, at A ∼ 1 in r = r∗, A′ = sA ∼ s is positive if s is positive. The group
velocity is given by 2γk. Then sγ > 0 is the sign condition for Robin boundary
conditions to generate target sources.

Persistence of the solutions for the full reaction-diffusion system can be shown
as in Theorem 4.12.

4. Concluding remarks

We have presented a method for analyzing pattern-formation in reaction-diffu-
sion systems in Rn caused by an instability of a spatially homogeneous equilibrium.
The inherent complications in the analysis, caused by the essential spectrum, could
be resolved by restricting to patterns, which are

• stationary or time-periodic and
• radially symmetric.

The strategy was to first derive an ordinary differential equation for the far-field pat-
tern, describing long-wavelength modulations of possible patterns including weak
curvature effects, represented by the nonautonomous dependence of the equation
on powers of 1/r; see Theorems 3.7, 4.8. In a second step, solutions of this reduced
ordinary differential equation were matched with the inner, core region of a possible
pattern.

Curvature effects do not differ between far-field expansion and the core region
in case of instabilities with zero wave number (O) and (H), where the matching
condition in the core region reduces to a Neumann boundary condition. However,
in the case of a Turing instability, curvature plays a crucial role: in the far-field,
averaging over the periodic structures qualitatively changes curvature effects and
implies spatial decay of the amplitude proportional to

√
r towards the center of the



82 5. DISCUSSION

pattern, whereas in the core region, we find almost constant amplitude. Transver-
sality in the construction of the defect is very weak and might prove responsible for
the weak stability of these patterns.

Stability considerations remain very incomplete. Coexistence patterns as found
here are unstable. One may, nevertheless ask:

Do there exist stable coexistence patterns?

As part of this question, we would like to find stable, localized solutions in a
“generic”, local bifurcation. It would then be of interest, how the physical rea-
soning of interfacial energy balancing potential difference between two different
states would fail.

Also, stability proofs for temporally oscillatory patterns such as target patterns
or spiral waves would help a lot in understanding this type of defects. The (formal)
arguments in [Hag82] seem to be the only — partial — answer in this direction.

Finally, we comment on most desirable extensions of our approach of radial
dynamics to non radially symmetric patterns. A positive result in this direction
was presented in [Sche98], where the case of a Hopf instability (H) was analyzed
in radial dynamics. Patterns were allowed to depend on the angular variable ϕ,
in contrast to periodic time-dependence, as considered here. In particular, the
approach allowed for a proof of existence of spiral waves, which are stationary
patterns in a corotating frame, substituting ψ = ϕ− ωrott.

However, the limitations of radial dynamics become obvious upon inspection
of the lattice-like configuration of single-humps, Section 2. Figure 3 shows how, in
polar coordinates, the pattern U(r, ·) fails to converge as r → ∞.

U

r

φ

Figure 3. The x-y-periodic solutions from Figure 1 plotted in po-
lar coordinates. For r → ∞, the ϕ-dependent patterns on r ≡ const
develop an increasing number of oscillations.

Methods from dynamical systems have proven to be most efficient for qualita-
tive descriptions of patterns in situations with one distinguished spatial direction,
identified as spatial time. We have added radial dynamics as a general tool to bifur-
cation theory in spatially extended systems. The existence result on focus patterns
in the Turing instability, as stated in Theorem 3.20, provides insight in the local
structure of a particular defect in a periodically structured medium. Experiments
in Rayleigh-Bénard convection [Cro89] exhibit many other defects and, although
we may think of different “time-actions” on Rn, we still seem to lack a systematic
method to approach these patterns.
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[Kir82] K. Kirchgässner. Wave solutions of reversible systems and applications. J. Differ. Equa-
tions 45 (1982), 113–127.
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E. B. T. G. Conference, Cargèse, France, September 3-9, 1993. NATO ASI Ser., Ser. C, Math.
Phys. Sci. 437 (1994), 221–240.

[Mie86] A. Mielke. A reduction principle for nonautonomous systems in infinite-dimensional

spaces. J. Differ. Equations 65 (1986), 68–88.
[Mie88a] A. Mielke. Reduction of quasilinear elliptic equations in cylindrical domains with appli-

cations. Math. Meth. Appl. Sci. 10 (1988), 51–66.
[Mie88b] A. Mielke. Saint Venant’s problem and semi–inverse solutions in nonlinear elasticity.

Arch. Rat. Mech. Anal. 102 (1988), 205–229.
[Mie92] A. Mielke. Reduction of PDEs on domains with several unbounded directions: A first

step towards modulation equations. Z. Angew. Math. Phys. 43 (1992), 449–470.
[NW69] A. Newell and J.A. Whitehead. Finite bandwidth, finite amplitude convection. J. Fluid
Mech. 38 (1969), 279–303.

[Ni98] W.-M. Ni. Diffusion, cross-diffusion, and their spike-layer steady states. Notices AMS 45

(1998), 9–18.
[PSS97] D. Peterhof, B. Sandstede, and A. Scheel. Exponential dichotomies for solitary-wave

solutions of semilinear elliptic equations on infinite cylinders. J. Differ. Equations 140 (1997),
266–308.

[Pli64] V.A. Pliss. The reduction principle in the theory of stability of motion. Sov. Math., Dokl.
5 (1964), 247–250. Translation from Dokl. Akad. Nauk SSSR 154 (1964), 1044–1046.

[Pom86] Y. Pomeau. Front motion, metastability and subcritical bifurcations in hydrodynamics.

Physica D 23 (1986), 3–11.
[PZM85] Y. Pomeau, S. Zaleski, and P. Manneville. Axisymmetric cellular structures revisited.

Z. Angew. Math. Phys. 36 (1985), 367–394.
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