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Superspiral Structures of Meandering and Drifting Spiral Waves
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The spatiotemporal superstructure of meandering and drifting spiral waves is explained analytically. It
is also demonstrated that the Hopf eigenmode that causes the transition to meandering waves is weakly
exponentially localized at onset but grows exponentially slightly before onset.
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Spiral waves are ubiquitous in various biological, chemi-
cal, and physical systems [1]. Many of these systems can
sustain meandering and drifting spiral waves. Meandering
and drifting spirals have been observed experimen-
tally, for instance, in the Belousov-Zhabotinsky (BZ)
reaction [2–5], the oxidation of carbon monoxide on
platinum surfaces [6], and during fibrillations in cardiac
tissue [7]. They have also been found in numerical
simulations of reaction-diffusion systems and the com-
plex Ginzburg-Landau equation. Meandering as well
as drifting spirals feature an interesting spatiotemporal
superstructure: the distances between consecutive spiral
arms are expanded and contracted in such a fashion that
the spatial structure exhibits a secondary superimposed
spiral. These superspirals have been observed experimen-
tally in the BZ reaction [3–5] and in catalyzed oxidations
[6]. Understanding the shape of superspirals is important
partly because superspirals often precede defect-mediated
turbulence [5] and because they, as well as supertarget
patterns, can be observed at the onset of spiral breakup.

Heuristically, the superstructure of a meandering spiral
reflects the Doppler effect that is caused by the meander-
ing spiral tip. The meandering motion of the tip has been
explained by a Hopf bifurcation with symmetry [8,9]. Su-
perspirals have been analyzed in Ref. [10] using a heuristic
kinematic model that assumes that the core is a localized
source of wave trains that form the spiral wave. The analy-
sis [10] does not predict the correct speed of the superspi-
rals and neither growth nor decay of the Hopf eigenmode.

In this Letter, we predict the spatiotemporal superstruc-
ture of meandering spiral waves analytically using spectral
theory: The continuous spectrum of the spiral is visible
only when the spiral is considered on the plane; on disks,
the so-called absolute spectrum [11] is observed. The key
is that, once the Hopf eigenvalue crosses the continuous
spectrum, the Hopf eigenmode picks up the shape of the
corresponding “continuous eigenmode” even though the
continuous spectrum itself is not visible on disks. The
shape of the continuous eigenmode can be computed from
the asymptotic wave trains that form the spiral. This anal-
ysis predicts, in particular, the exact decay properties of
the Hopf eigenmode.
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We consider a reaction-diffusion model

ut � DDu 1 f�u�, u [ �m, x [ V , (1)

where V is either the disk of radius R or the entire plane
�2. Archimedean spiral waves are solutions to Eq. (1) that
rotate rigidly with a constant angular velocity c and that
are asymptotically periodic along rays in the plane. In a
corotating coordinate frame, Eq. (1) is given by

ut � DDu 1 cuw 1 f�u�, x [ V , (2)

where �r , w� denote polar coordinates. A spiral wave is a
stationary solution u��r , w� of Eq. (2) so that u��r , w� !
u`�kr 1 w� as r ! ` for some 2p-periodic function
u`�c�. The wave number k and the wave speed c are
related via a nonlinear dispersion relation.

We begin by investigating spirals on V � �2. The sta-
bility properties of the spiral wave u��r , w� are determined
by the eigenvalue problem

DDy 1 cyw 1 f 0���u��r , w����y � ly . (3)

First, we ignore point spectrum and concentrate on the
continuous spectrum. The continuous spectrum depends
only on the limiting equation for r ! ` [11]. In fact, l is
in the continuous spectrum [12] of the spiral wave if

Dyrr 1 cyw 1 f 0���u`�kr 1 w����y � ly

has a solution y�r, w� � eigrw�kr 1 w� for some g [
�, where w�c� is 2p periodic in c . The continuous spec-
trum of the spiral near l � 0 is given by the dispersion
relation

l � l��ig� ,

y�r , w� � eigr�ku0
`�kr 1 w� 1 O�g�� ,

for g [ � close to zero with l��0� � 0. The curve l��ig�
generates additional spectrum of the form

l � l��ig� 1 ic� ,

y�r, w� � eigrei�w�ku0
`�kr 1 w� 1 O�g�� ,

(4)

for arbitrary � [ � [11]. Note that, for � � 1 and g � 0,
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we obtain the translation eigenvalue

lT � ic, yT�r , w� � keiwu0
`�kr 1 w�

� �≠x1 1 i≠x2 �u� .

We assume that the spiral wave is stable so that

l��ig� � 2igcgr 2 dg2,

for some d . 0. Note that the group velocity cgr . 0 is
positive [11].

Next, we discuss the point spectrum, i.e., isolated eigen-
values with finite multiplicity, of the spiral wave for l to
the right of the continuous spectrum. We investigate the
eigenvalue problem (3) rewritten as

yr � ỹ ,

ỹr � 2

∑
ỹ

r
1

yww

r2

1 D21�cyw 1 � f 0���u��r , w���� 2 l�y�
∏

,

(5)

where the radius r acts as the evolution variable. Any
eigenfunction y�r, w� associated with an isolated eigen-
value l is necessarily bounded. Thus, l is an eigenvalue
provided that Eq. (5) has a bounded solution �y, ỹ� �r , w�
for r $ 0. Such an eigenfunction is then contained in the
intersection of the stable eigenspace Es

1 and the unstable
eigenspace Eu

2, where Es
1 contains all initial conditions at

r � 1 that lead to solutions of Eq. (5) which are bounded
as r ! `, while Eu

2 consists of all initial conditions at
r � 1 that lead to solutions of Eq. (5) which are bounded
as r ! 0. As r ! `, Eq. (5) becomes the equation

yr � ỹ ,

ỹr � 2�D21�cyw 1 � f 0���u`�kr 1 w���� 2 l�y�� .
(6)

For any fixed l [ �, we say that n [ � is a spatial eigen-
value of Eq. (6) if Eq. (6) has a solution so that y�r , w� �
enrw�kr 1 w� for some 2p-periodic function w�c�. In
other words, n is a solution of the linear dispersion rela-
tion l � l��n� of the spiral wave. Note that, if l is in the
continuous spectrum of the spiral wave, then n � ig is a
spatial eigenvalue for g [ � with l � l��ig�.

Upon setting r � er , Eq. (5) becomes

yr � y̌, y̌r � 2yww

in the limit r ! 2` that corresponds to r � 0. This
equation admits the solutions

y�r, w� � e6kreikw , k . 0

as well as y�r, w� � 1 and y�r, w� � r. In particular,
the asymptotic unstable eigenspace at the core state r � 0
does not depend on l.

We seek eigenfunctions as intersections of the stable
and unstable eigenspaces Es

1 and Eu
2. Unfortunately, both

spaces are infinite dimensional so that we cannot easily
count dimensions, or codimensions, and apply transversal-
ity arguments. For the sake of clarity, we pretend that these
dimensions are both finite and refer to Ref. [13] for a more
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correct argument where dimensions are counted by means
of a comparison to a reference equation. We demonstrated
[11] that, for l to the right of the continuous spectrum, the
dimensions of Es

1 and Eu
2 add up to the dimension of the

phase space, which is the space of 2p-periodic functions
�y, ỹ� �w�. As shown above, the dimension of Eu

2 does
not depend on l. The dimension of Es

1, however, drops
by one as l crosses through the continuous spectrum from
right to left (see Fig. 1), since n� � ig is a spatial eigen-
value for l in the continuous spectrum. Hence, to the left
of the continuous spectrum, the dimensions of Es

1 and Eu
2

do not add up to the full space dimension anymore, and
the two spaces will therefore never intersect. If we, how-
ever, include into the space Es

1 the now unstable spatial
eigenvalue n� that crossed the imaginary axis, then the di-
mensions still add up to the full space dimension. Inter-
sections of Es

1 and Eu
2 then correspond to resonance poles

rather than to eigenvalues: the associated eigenfunctions
will no longer decay but instead grow exponentially with
rate Ren� . 0 as r ! `. Suppose that such a resonance
pole exists and crosses through the imaginary axis close
to lT � ic as a system parameter is varied (see Fig. 1).
Upon crossing through the continuous spectrum at

l � i�c 2 gcgr� 2 dg2, (7)

the eigenfunction of the resonance pole picks up the shape

y�r , w� � keigreiwu0
`�kr 1 w�

of the eigenfunction (4) that belongs to that value of l.
Upon crossing the imaginary axis, the Hopf eigenvalue and
the associated eigenmode, for r large, are given by

lH � i�c 2 gcgr� ,

yH�r, w� � ke2dg2r�cgreigreiwu0
`�kr 1 w� .

(8)

The implications of the above analysis for the spectrum
of the spiral wave on a large disk V of radius R are as
follows. On the bounded domain V, the continuous spec-
trum is no longer present. Instead the so-called absolute
spectrum [11] becomes visible that consists of those val-
ues of l for which the dispersion relation l � l��n� of

FIG. 1. Plotted are the absolute spectrum (bold lines) and the
continuous spectrum (thin lines) of the spiral wave. The insets
show the spatial spectra of Eq. (6). As l crosses through the
continuous spectrum, a spatial eigenvalue crosses through the
imaginary axis. The spatial eigenvalues inside the dotted circles
define the stable eigenspace at r � `. The cross indicates a
Hopf eigenvalue that crosses from left to right through the con-
tinuous spectrum and the imaginary axis.
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the spiral wave has solutions n1 and n2 that have the same
real part and that satisfy a pinching condition. The edge of
the absolute spectrum is determined by a double root of the
dispersion relation [14,15]. The aforementioned resonance
poles persist as proper eigenvalues of the spiral wave on
the disk [11]. Thus, while the continuous spectrum itself is
not visible on the disk V, it still causes a change of the spa-
tial shape of the persisting resonance poles: the resonance
poles’ eigenfunctions grow exponentially in the radius r
for l to the left of the continuous spectrum and decay for
l to the right of the continuous spectrum. This shows that
the meandering eigenmode is indeed exponentially local-
ized but only weakly [see Eq. (8)]. Right before the Hopf
bifurcation, it is in fact growing. This explains the results
of the numerical simulations (Fig. 3 in Ref. [8]).

Next, we briefly review the results in Ref. [9] on the tip
motion near a 1:1 resonance between the Hopf eigenvalue
lH � i�c 2 gcgr� and the translation eigenvalue lT �
ic which occurs for g small. To exploit the Euclidean
symmetry group SE�2� of the plane, we write

��p, F�u� �x� � u�e2iF�x 2 p��

for elements �p, F� [ � 3 �. We think of p as
parametrizing the position of the tip of the spiral wave.
The normal form for a supercritical Hopf bifurcation near
resonance is then given by [9]

�p � eiF�p� 2 z̄�, �F � c ,

�z � �lH 1 m 2 jzj2�z ,
(9)

for some p� [ �. Here z [ � is the coordinate in the
Hopf eigenspace, i.e., z � Re�z�≠x1 1 i≠x2�u��, and the
system parameter m [ � unfolds the Hopf bifurcation.
Solving Eq. (9), we get

p�t� �
p�

ic
eict 2

p
m

igcgr
e2ia�eigcgrt 2 1�, g fi 0

�
p�

ic
eict 1

p
m tei�p2a�, g � 0

for the tip position with initial condition z � eia . Thus,
for g � 0, the bifurcating spirals drift towards w � p 2

a. For g fi 0, the spirals meander: the petals become
visible if

p
m�jgcgrj ¿ jp��cj. The motion of the tip

along the envelope of the petals has angular velocity gcgr,
while the motion within each petal has angular velocity c.

Near onset, and in the far field, the meandering spiral
wave is given by

u`�kr 1 w� 1
p

m Re�ei�c2gcgr�teigreiw�u0
`�kr 1 w�

� u`�kr 1 w 1
p

m cos��c 2 gcgr�t 1 gr 1 w�� ,

where we neglected the weak exponential decay of the
eigenfunction (8). In the laboratory frame, we have

u`�kr 1 w 2 ct 1
p

m cos�2gcgrt 1 gr 1 w�� .

The level curves of the meandering spiral can be computed
by setting the argument of u` equal to a phase d mod2p .
To first order in

p
m, we obtain
w � d 2 kr 1 ct

2
p

m cos��c 2 gcgr�t 1 �g 2 k�r 1 d� .

The superstructure is caused by the contraction and ex-
pansion of the distance between consecutive arms of these
level curves. Thus, we shall analyze the function D�r� that
is defined so that

w

µ
r 2

2p

k
1 D

∂
2 w�r� 2 2p � 0 .

In other words, D�r� is the correction to the distance be-
tween the spiral-like level curves, measured in the radial
direction. The location of the superspiral is given by those
values of r for which D0�r� � 0 vanishes so that D is ex-
tremal. A straightforward computation shows that this is
the case provided gr 1 w � gcgrt which describes the
spatiotemporal superstructure for g small.

Next, we consider drifting spirals. Recall the expres-
sion (8) for the Hopf eigenvalue lH and the eigenfunc-
tion yH�r , w�. For g � 0, i.e., at the 1:1 resonance, the
eigenfunction is equal to Re��≠x1 1 i≠x2 �u��. We therefore
compute the generalized eigenfunction ŷH�r, w� by taking
the derivative with respect to l at g � 0. We obtain

ŷH�r, w� �
d

dl
yH�r , w� �

µ
dl

dg

∂21 d
dg

yH�r, w�

� 2
kr
cgr

eiaeiwu0
`�kr 1 w� .

Thus, for
p

m R small, drifting spiral waves are given by

u`�kr 1 w� 2
p

m
kr
cgr

Re�eicteiaeiw�u0
`�kr 1 w�

� u`

µ
kr 1 w 2

p
m

kr
cgr

cos�ct 1 w 1 a�
∂

.

Transforming into the laboratory frame, w ! w 2 ct, and
proceeding as for meandering spirals, we conclude that the
transformation

r ! r 1
2p

jkj

∑
1 1

p
m

cgr
cos�w 1 a�

∏
n ,

for n [ �, leaves the level curves of the drifting spiral
invariant. Compared with the spatial period 2p�jkj of
the primary spiral wave, we see that consecutive wave
trains in the spiral are compressed for w 1 a � p and
expanded for w 1 a � 0. Comparing this result with the
tip motion of a drifting spiral, we conclude that the wave
trains are indeed compressed in the direction of drift with
a compression factor of �1 2

p
m�cgr�.

We confirm our predictions by direct numerical simula-
tions of the FitzHugh-Nagumo equation,

ut � Du 1
1
e

u�1 2 u�
µ
u 2

y 1 b
a

∂
,

yt � u 2 y ,

using Barkley’s code EZSPIRAL. We used Neumann bound-
ary conditions on a 600 3 600 square with Dx � 0.33 and
173



VOLUME 86, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JANUARY 2001
FIG. 2. The left column contains plots of the superspiral (after
image processing) and the tip motion for an inwardly meander-
ing spiral at a � 0.36. The right column shows these plots for
an outwardly meandering spiral at a � 0.47. The lower plots
are magnified compared with the upper plots. The arrows indi-
cate the direction in which the tip moves for increasing time.

Dt � 0.02. The parameters e � 0.02 and b � 1 3 1025

were fixed. The results of our simulations are shown in
Fig. 2.

In summary, we considered an Archimedean spiral wave
u��r , w 2 ct� with spiral structure kr 1 w � ct that un-
dergoes a Hopf bifurcation with Hopf eigenvalue

lH � i�c 2 gcgr� ,

for g close to zero. We demonstrated that the associated
eigenfunction grows with a small exponential rate right be-
fore and decays at the Hopf bifurcation point, [see Eq. (8)],
due to the fact that the Hopf eigenvalue is a resonance
pole until it crosses the continuous spectrum of the spiral.
For g � 0, the generalized eigenmode grows linearly in r ,
and the bifurcating spirals drift. The wave trains are com-
pressed along the direction of drift with the compression
factor �1 2

p
m�cgr�, while they are expanded in the oppo-

site direction. For g fi 0, the bifurcating spirals meander.
The angular velocity of the tip motion along the envelope
of the petals is equal to gcgr, while it is equal to c for
the motion within each petal. The spatial superstructure
of the meandering spirals is itself an Archimedean spiral
given by

r 1
w

g
� cgrt . (10)

Suppose that the spiral wave rotates clockwise so that
c , 0. Thus, the tip rotates also clockwise within each
petal with speed c. For g . 0, we get outward petals
since the tip rotates counterclockwise along the petals’ en-
velope with speed gcgr. The superspiral (10) also rotates
counterclockwise in time and angle. For g , 0, we ob-
tain inward petals since the tip rotates clockwise along the
petals’ envelope. The superspiral (10) also rotates clock-
wise in time and angle. These predictions are in agreement
with the actual behavior of the patterns observed in experi-
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ments (Figs. 2 and 3 in Ref. [4]) and in our numerical
simulations (see Fig. 2). Lastly, we remark that drifting
tips occur also at the higher resonances ic � �lH with
� [ � between lT � ic and the Hopf eigenvalue lH.
The Hopf eigenfunctions are exponentially localized for
j�j fi 1, and we therefore predict that there is no visible su-
perstructure. If, on the other hand, ic� � lH with � [ �,
then Eq. (4) shows that the Hopf eigenmodes are not local-
ized, and our analysis predicts prominent superstructures
consisting of �-armed superspirals for j�j . 1 and target
patterns for � � 0 even though the spirals do not drift.
We emphasize that the Hopf eigenmode is exponentially
growing in r if the spiral wave has previously experienced
an Eckhaus instability since this makes d , 0 in Eqs. (7)
and (8). The superstructure is then more pronounced at the
boundary. This phenomenon occurs in the model studied
in Ref. [16].
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