Math 5286H

Problem Set 1

Due on Wednesday, March 1.

- True/false. Correct answers are 2 points, incorrect worth 0 points, "I don't know" worth 1 point.
 - If F is a field, then the fraction field of F is isomorphic to F.
- _____ The ring $\mathbb{Z}/6$ has a fraction field.
- _____ The ring $\mathbb{Z}/(nm)$ is isomorphic to $\mathbb{Z}/n \times \mathbb{Z}/m$ only when n and m are relatively prime.
- _____ There is an isomorphism of rings $\mathbb{C}[x,y]/(y-x^2-x,y+x^2+x) \cong \mathbb{C} \times \mathbb{C}$.
- _____ The ideal $(x^2 + y^2, x + 1, y^2 + y + 1)$ is a maximal ideal of $\mathbb{C}[x, y]$.

Short answer. 5 points each for a correct answer.

- 1. The intersection of the ideals (x) and (y) of $\mathbb{C}[x,y]$ is the ideal
- 2. The elements ______ of the ring $\mathbb{Z}[i]$ are the only solutions to the equation $x^2 + 6x + 8 = 0$.

Long form. 10 points.

1. Show that the ring

$$\mathbb{Z}[x]/(x^2-2)$$

is an integral domain, and that the fraction field is isomorphic to the ring

$$\mathbb{Q}[x]/(x^2-2).$$