Math 5286H

Problem Set 1

Due on Wednesday, March 1.

True/false. Correct answers are 2 points, incorrect worth 0 points, "I don't know" worth 1 point.
\qquad If F is a field, then the fraction field of F is isomorphic to F.
\qquad The ring $\mathbb{Z} / 6$ has a fraction field.
_ The ring $\mathbb{Z} /(n m)$ is isomorphic to $\mathbb{Z} / n \times \mathbb{Z} / m$ only when n and m are relatively prime.
\qquad There is an isomorphism of rings $\mathbb{C}[x, y] /\left(y-x^{2}-x, y+x^{2}+x\right) \cong \mathbb{C} \times \mathbb{C}$.
_The ideal $\left(x^{2}+y^{2}, x+1, y^{2}+y+1\right)$ is a maximal ideal of $\mathbb{C}[x, y]$.
Short answer. 5 points each for a correct answer.

1. The intersection of the ideals (x) and (y) of $\mathbb{C}[x, y]$ is the ideal
2. The elements \qquad and \qquad _of the ring $\mathbb{Z}[i]$ are the only solutions to the equation $x^{2}+6 x+8=0$.

Long form. 10 points.

1. Show that the ring

$$
\mathbb{Z}[x] /\left(x^{2}-2\right)
$$

is an integral domain, and that the fraction field is isomorphic to the ring

$$
\mathbb{Q}[x] /\left(x^{2}-2\right)
$$

