Math 8302, Manifolds and Topology II Homework 2 Due in-class on Monday, February 9

- 1. We mentioned, but did not show in class, that for a smooth map $f: M \to N$, the set of regular points is an open subset of M. Give a proof of this. (You may assume that "row reduction works": an $m \times n$ matrix A is surjective if and only if there is a set $\{k_1 < k_2 < \ldots < k_m\}$ of columns of A so that the resulting submatrix $(A_{i,k_i})_{i,j}$ is invertible.)
- 2. Determine the set of singular values of the function $f: S^2 \to \mathbb{R}^2$ given by f(x, y, z) = (2x + y, 2x - y).
- 3. Suppose $M \subset \mathbb{R}^n$ is a smooth manifold of dimension k. Define

$$T(M) = \{ (p, \vec{v}) \in \mathbb{R}^n \times \mathbb{R}^n \mid p \in M, \vec{v} \in T_p(M) \}$$

Show that T(M) is a smooth manifold of dimension 2k, and that the projection $\pi: T(M) \to M$ given by $\pi(p, \vec{v}) = p$ is a smooth map.

- 4. Suppose that $f: M \to N$ is a smooth map. Show that the function $df: T(M) \to T(N)$ given by $df(p, \vec{v}) = (f(p), df_p(\vec{v}))$ is a smooth map, and that $d(g \circ f) = dg \circ df$.
- 5. On the last homework, you constructed a smooth function f on \mathbb{R} which was positive on $(0, \infty)$ and zero otherwise. Use this to construct smooth functions $\mathbb{R} \to \mathbb{R}$ of the following types.
 - (a) A smooth function g which is positive on (-1,1) and zero otherwise.
 - (b) A smooth function h with

$$h(x) = 0 x \le -1, h(x) = 1 x \ge 1, < h(x) < 1 |x| < 1.$$

(c) A smooth function k with

0

$$k(x) = 1 |x| \le 1,$$

$$k(x) = 0 |x| \ge 2,$$

$$0 < k(x) < 1 1 < |x| < 2.$$