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COMMUTATIVE Γ-RINGS DO NOT MODEL ALL
COMMUTATIVE RING SPECTRA

TYLER LAWSON

(communicated by Brooke Shipley)

Abstract
We show that the free E∞-algebra on a zero-cell cannot be

modeled by a commutative Γ-ring. The proof shows that Dyer-
Lashof operations of positive degree must vanish on the zero’th
homology of such an object.

1. Introduction

There are now several peacefully coexisting models for the stable homotopy cate-
gory that admit amenable symmetric monoidal structures, and this has led to
a great deal of new activity in the subject. The most commonly used models are
S-modules [3], symmetric spectra [4], orthogonal spectra [7], and Γ-spaces [9] with a
smash product introduced by Lydakis [6].

Each of these categories has its advantages and its quirks. The main distinction
between Γ-spaces and the other major models of homotopy theory is that Γ-spaces
only model connective spectra. On the other hand, they have the advantage that
they are simple to define, as well as being closely tied to common infinite loop space
machines, to algebraic K-theory, and to Goodwillie calculus.

The symmetric monoidal structure on Γ-spaces gives rise to a notion of a commu-
tative Γ-ring. There is a natural realization functor from these objects to symmetric
spectra that is symmetric monoidal, and hence takes commutative Γ-rings to com-
mutative symmetric ring spectra [7].

The notions of commutative ring objects in S-modules, symmetric spectra, and
orthogonal spectra can be made homotopically meaningful and equivalent. However,
as mentioned in the introduction of [8], it seems unlikely that many such “structured
commutative ring spectra,” or E∞-algebras, can be modeled by a commutative Γ-ring.

The purpose of this note is to show that Dyer-Lashof operations of positive degree
all vanish on the zero’th homology of a spectrum associated to a commutative Γ-ring.
Therefore, not all connective commutative ring spectra can be modeled. The canonical
example is, as one might guess, the free algebra on a zero-cell. Commutative Γ-rings
then exist as some intermediate category between simplicial commutative rings and
connective E∞-algebras.
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2. Proof of main result

We recall some definitions and results from [1, 8]. Let Γo be (a skeletal replacement
for) the category of finite based sets, and S the category of based simplicial sets
(“spaces”). We let Sn = (S1)∧n be the n-fold smash product of the simplicial circle.

Definition 2.1. A Γ-space is a functor X : Γo → S such that X(∗) = ∗.
A Γ-space prolongs to a functor on all based spaces as follows: For an arbitrary

based set S, define

X(S) = colim
T⊂S, |T |<∞

X(T )

and for a based space K = {Kn}, we let X(K) be the realization (diagonal) of the
simplicial space {X(Kn)}. Weak equivalences between spaces give rise to weak equiv-
alences between values of X [6, Prop. 5.20].

For based sets S and T , there is a natural “assembly map”

S ∧ X(T ) ∼=
∨

X(T )→ X
(∨

T
) ∼= X(S ∧ T )

which, by levelwise application, prolongs to an assembly map

K ∧ X(L)→ X(K ∧ L).

This is natural in based spaces K and L and is an isomorphism if K = ∗ or K = S0.
We can make the following definition.

Definition 2.2. The associated spectrum Sp(X) is the symmetric spectrum
{X(Sn)}, with structure maps given by the assembly maps

Sm ∧ X(Sn)→ X(Sm ∧ Sn).

This functor is a composite of functors denoted by P in [7]. The symmetric spec-
trum Sp(X) is always connective and has semistable homotopy groups, meaning that
the derived homotopy group πk of homotopy classes of maps Sk → Sp(X) can be
calculated as colim πn+kX(Sn). (In a version based on topological spaces, the functor
Sp has this property because it factors through orthogonal spectra.)

Lemma 2.3. The image of the set π0(X(S0)) generates the group π0(Sp(X)).

Proof. It suffices to show that the suspension maps Sn ∧ X(S0)→ X(Sn) are sur-
jective on πn. There is a “collapse” weak equivalence of simplicial sets Sn → S̃n from
the n-fold smash product to a complex with only two non-degenerate simplices, in
degrees 0 and n. In the commutative diagram

Sn ∧ X(S0) −−−−→ X(Sn)
y

y
S̃n ∧ X(S0) −−−−→ X(S̃n),

the vertical maps are weak equivalences, and so it suffices to show that the lower
assembly map is surjective on πn.
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However, as a map of simplicial spaces the assembly map in the lower row is the
map (S̃n)k ∧ X(S0)→ X((S̃n)k), which is an isomorphism in degrees n and lower.
The resulting map of geometric realizations is therefore an isomorphism on n-skeleta,
and hence n-connected.

There is a symmetric monoidal structure ∧ on Γ-spaces, based on left Kan exten-
sion, such that a map X ∧ Y → Z is equivalent to a natural family of maps

X(S) ∧ Y (T )→ Z(S ∧ T )

for finite based sets S and T . The smash product has as unit the identity functor
S(S) = S.

Definition 2.4. A commutative Γ-ring is a Γ-space R with maps R ∧ R→ R and
S→ R making R a commutative, associative monoid under ∧.

In particular, a commutative Γ-ring R has natural multiplication maps

R(X) ∧ R(Y )→ R(X ∧ Y )

commuting with the twist isomorphism, and has a natural commutative monoid struc-
ture on R(S0). The functor Sp is lax symmetric monoidal, and so the associated
symmetric spectrum Sp(R) is then naturally a commutative ring object. Explicitly,
the maps

R(Sn) ∧ R(Sm)→ R(Sn ∧ Sm),

obtained by applying the multiplication maps levelwise to the simplicial set Sn ∧
Sm, give the symmetric spectrum a commutative ring structure, and R(S0) is a
commutative topological monoid. (As in the objection of Lewis [5], the fact that the
zero’th space of a commutative symmetric ring spectrum is too commutative is an
essential reason why the positive stable model structure on symmetric spectra [7, §14]
is necessary to obtain a good model category of commutative ring objects.)

For a Γ-space X and a based space K, we have an object X ∧ K given by

(X ∧ K)(S) = X(S) ∧ K.

The functor S ∧ (−) is part of the adjunction

MapS(K,X(S0)) ∼= MapΓ(S ∧ K, X),

and therefore this functor preserves colimits. There are natural isomorphisms

(S ∧ K) ∧ (S ∧ L) ∼= S ∧ (K ∧ L)

making this functor into a strong symmetric monoidal functor. In particular, given
a commutative simplicial monoid M , there is a natural commutative Γ-ring S[M ] =
S ∧M+, and an adjunction

Mapcomm. monoids(M,R(S0)) ∼= Mapcomm. Γ-rings(S[M ], R). (1)

In particular, if M is the free commutative topological monoid NS on a set S, then



192 TYLER LAWSON

we get an adjunction

Map(S, R(S0)) ∼= Mapcomm. Γ-rings

(
S[NS ], R

)
.

For a symmetric spectrum Y and a based space K we also have a symmetric spectrum
Y ∧ K, and the functor S ∧ (−) is strong symmetric monoidal. There is a natural
isomorphism Sp(X ∧ K) ∼= Sp(X) ∧ K.

We now briefly recall the Dyer-Lashof operations [2]. Let R be a commutative sym-
metric ring spectrum, H = HFp be a commutative symmetric ring spectrum modeling
the mod-p Eilenberg-MacLane spectrum, and T = H ∧ R (although T can in general
be any commutative H-algebra). Given an element α ∈ Hk(R;Fp) = πk(T ), we can
choose a fibrant replacement T → T̃ and a representing map α : Sk → T̃ . Taking
p-fold smash products over H and considering the natural map from homotopy orbits
to orbits, we obtain a diagram of symmetric spectra as follows:

(Sk)∧p
hΣp
→ T̃∧Hp

hΣp

∼←− T∧Hp
hΣp

→ T∧Hp/Σp → T.

Here the right-hand map is the multiplication map. By adjunction we obtain a total
power operation

P (α) : H∗
(
(Sk)∧p

hΣp
;Fp

)
→ H∗(R;Fp).

The images of particular generators of homology on the left-hand side are the Dyer-
Lashof operations on α. By construction these operations are natural in R. If k is
even or p = 2, then the homology on the left-hand side is a shift of the homology of
BΣp via the Thom isomorphism.

Theorem 2.5. If R is a commutative Γ-ring, then the elements of H0(Sp(R);Fp)
vanish under all Dyer-Lashof operations of positive degree.

Proof. Let S ⊂ R(S0) be a set of representatives for π0R(S0). By Lemma 2.3 and the
adjunction of equation 1, there is a natural map S[NS ]→ R of commutative Γ-rings
such that the associated map

Sp
(
S[NS ]

)→ Sp(R)

is surjective on π0. The map on H0(−;Fp) is then also surjective because the result-
ing spectra are connective. By naturality it suffices to show that all Dyer-Lashof
operations vanish on H0(S[NS ];Fp). However, as NS is discrete we have

H∗(Sp(S[NS ])) = Hsing
∗ (NS) = 0

for ∗ > 0.

Corollary 2.6. The free E∞-algebra on S0 cannot be realized by a commutative
Γ-ring.

Proof. The free E∞-algebra on a spectrum X has the homotopy type

P(X) =
∨

k>0

(X∧k)hΣk
.
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In particular, if X = S0, then the homology of P(S0) is
⊕

k>0

H∗(BΣk;Fp).

The total power operation on the generator α of H0(BΣ1;Fp) is then the map

P (α) : H∗(BΣp;Fp)→
⊕

k>0

H∗(BΣk;Fp),

given by the inclusion of a summand, and in particular nontrivial in infinitely many
positive degrees. (In fact, the right-hand side is the free unstable algebra over the
Dyer-Lashof algebra on the generator α.)

Remark 2.7. It is not clear whether there are further restrictions on the Dyer-Lashof
structure of a commutative Γ-ring. For example, the Eilenberg-MacLane object HF2

can be realized by a commutative Γ-ring H with

H(X+) =
⊕

x∈X

F2.

The mod-2 homology H∗(Sp(H);F2) is the dual Steenrod algebra A∗, whose Dyer-
Lashof structure is elaborated upon in [2] and can be deduced from the Nishida
relations. In particular, one can show, by applying the operation (Sqm+1)∗ dual to
Sqm+1, that the generator ξ1 of the dual Steenrod algebra in degree 1 supports
nonzero Dyer-Lashof operations Qm for all m > 1.

A natural further question is then whether less “rigid” examples, such as the spher-
ical group ring of a 0-connected infinite loop space, admit models as commutative
Γ-rings.
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