.

.

Recent papers and preprints

Recent papers and preprints

  1. Bobkov, S. G. An extended Khinchine's theorem, and Edgeworth approximations in presence of typical noise. Preprint (2017).
  2. Bobkov, S. G. Central limit theorem and Diophantine approximations. Preprint (2016).
  3. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Rényi divergence and the central limit theorem. Preprint (2016).
  4. Bobkov, S. G.; Marsiglietti. A. Variants of Entropy Power Inequality. Preprint (2016).
  5. Bobkov, S. G.; Ledoux, M. One-dimensional empirical measures, order statistics and Kantorovich transport distances. Preprint (2016). To appear in: Memoirs of the AMS.

    2017

    2017

  6. Bobkov, S. G.; Nayar, P.; Tetali, P. Concentration properties of restricted measures with applications to non-Lipschitz functions. Geometric Aspects of functional analysis, Lecture Notes in Math. 2169 (2017), pp. 25-53.
  7. Bobkov, S. G. Asymptotic expansions for products of characteristic functions under moment assumptions of non-integer orders. The IMA Volumes in Mathematics and its Applications. Concentration, Convexity and Discrete Structures, 161 (2017) pp. 297-357.
  8. Bobkov, S. G. On isoperimetric functions of probability measures having log-concave densities with respect to the standard normal law. The IMA Volumes in Mathematics and its Applications. Concentration, Convexity and Discrete Structures, 161 (2017), pp. 577-583.
  9. Bobkov, S. G. Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. Probab. Theory Related Fields, 19 January 2017, DOI: 10.1007/s00440-017-0756-2.

    2016

    2016

  10. Bobkov, S. G. Proximity of probability distributions in terms of Fourier-Stieltjes transforms. Russian Math. Surveys, vol. 71, issue 6 (2016), pp. 1021-1079. Translated from: Uspekhi Matem. Nauk, vol. 71, issue 6 (432), 2016 pp. 37-98. Russian version is here.
  11. Bobkov, S. G. Isoperimetric problems in the theory of infinite dimensional probability measures. (Russian) LAMBERT Academic Publishing, Saarbrucken, 2016, 312 pp.
  12. Bobkov, S. G.; Melbourne, J. Hyperbolic measures on infinite dimensional spaces. Probab. Surveys 13 (2016), pp. 57-88.
  13. Bobkov, S. G.; Cordero-Erausquin, D. K-L-S-type isoperimetric bounds for log-concave probability measures. Annali di Matematica Pura ed Applicata 195 (2016), pp. 681-695.
  14. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Second order concentration on the sphere. Communications in Comtemporary Mathematics. Online 13 September 2016. An extended version is here.
  15. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Stability of Cramer's characterization of the normal law in information distances. In: High Dimensional Probability VII: The Cargese volume. Progress in Probability 71 (2016), pp. 3-35.
  16. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Regularized distributions and entropic stability of Cramer's characterization of the normal law. Stochastic Processes Appl. 126 (2016), issue 12, pp. 3865-3887. An extended version is here.

    2015

    2015

  17. Bobkov, S. G.; Melbourne, J. Localization for infinite dimensional hyperbolic measures. (Russian) Doklady Akademii Nauk, vol. 462 (2015), no. 3, pp. 261-263. English version [Doklady Mathematics, vol. 91 (2015), no. 3, pp. 297-299] is here.
  18. Bobkov, S. G.; Chistyakov, G. P. Entropy power inequality for the Rényi entropy. IEEE Transactions on Information Theory 61 (2015), no. 2, pp. 708-714.
  19. Bobkov, S. G.; Ding, Y. Optimal transport and Rényi informational divergence. Electron. Comm. Probab. 20 (2015), no. 4, pp. 1-12.
  20. Bobkov, S. G.; Chistyakov, G. P.; Kösters, H. The entropic Erdös-Kac limit theorem. J. Theor. Probab. 28 (2015), no. 4, pp. 1520-1555.
  21. Bobkov, S. G.; Chistyakov, G. P. On concentration functions of random variables. J. Theor. Probab. 28 (2015), no. 3, pp. 976-988.

    2014

    2014

  22. Bobkov, S. G.; Gozlan, N.; Roberto, C.; Samson, P.-M. Bounds on the deficit in the logarithmic Sobolev inequality. J. Funct. Anal. 267 (2014), no. 11, pp. 4110–4138.
  23. Bobkov, S. G.; Colesanti, A; Fragalà, I. Quermassintegrals of quasi-concave functions and generalized Prekopa-Leindler inequalities. Manuscripta Mathematica 143 (2014), no. 1-2, pp. 131-169.
  24. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Fisher information and convergence to stable laws. Bernoulli (2014), no. 3, pp. 1620-1646.
  25. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Fisher information and the central limit theorem. Probab. Theory Related Fields 159 (2014), issue 1-2, pp. 1-59.
  26. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Berry-Esseen bounds in the entropic central limit theorem. Probab. Theory Related Fields 2014 (159), pp. 435-478.
  27. Bobkov, S. G.; Chistyakov, G. P. Bounds on the maximum of the density for sums of independent random variables. J. Math. Sciences (New York), vol. 199 (2014), no. 2, pp. 100-106. Translated from: Zapiski Nauchn. Semin. POMI, 408 (2012), Veroyatnost' i Statistika. 18, pp. 62-73. Russian version is here.

    2013

    2013

  28. Bobkov, S. G. Entropic approach to E. Rio's central limit theorem for W_2 transport distance. Statistics and Probability Letters, 83 (2013), no. 7, pp. 1644–1648.
  29. Bobkov, S. G.; Madiman, M. On the problem of reversibility of the entropy power inequality. In: Limit Theorems in Probability, Statistics and Number Theory. Springer Proceedings in Mathematics and Statistics, 42 (2013), pp. 61-74.
  30. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem. Ann. Probab. 41 (2013), no. 4, pp. 2479-2512.
  31. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Convergence to stable laws in relative entropy. J. Theor. Probab. 26 (2013), no. 3, pp. 803-818.
  32. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Stability problems in Cramér-type characterization in case of i.i.d. summands. Theory Probab. Appl. 57 (2013), no. 4, 568-588. Probab. Theory Appl. 57 (2012), no.4, pp.701–723.

    2012

    2012

  33. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Bounds for characteristic functions in terms of quantiles and entropy. Electron. Comm. Probab. 17 (2012), electronic, No. 21, 9 pp.
  34. Bobkov, S. G.; Madiman, M. An equipartition property for high-dimensional log-concave distributions. Proc.of the 50th Annual Allerton Conference on Communication, Control, and Computing, 2012.
  35. Bobkov, S. G.; Madiman, M. Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures. J. Funct. Anal. 262 (2012), no. 7, pp. 3309-3339.
  36. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Entropic instability of Cramer's characterization of the normal law. Selected Works of Willem van Zwet, pp. 231-242, Sel. Works Probab. Stat., Springer, New York, 2012.

    2011

    2011

  37. Bobkov, S. G. The Brunn-Minkowski inequality in spaces with bitriangular laws of composition. J. Math. Sciences (New York), vol. 179 (2011), no. 1, pp. 2-6. Translated from: Problems in Math. Analysis, 61 (2011), pp. 5–8.
  38. Bobkov, S. G. On Milman's ellipsoids and M-position of convex bodies. In: Concentration, Functional Inequalities and Isoperimetry. Proceedings of the International workshop, Contemporary Math., AMS, vol. 545, pp. 23-34, 2011.
  39. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Non-uniform bounds in local limit theorem in case of fractional moments. II. Math. Methods of Statistics, vol. 20 (2011), no. 4, pp. 269-287.
  40. Bobkov, S. G.; Chistyakov, G. P.; Götze, F. Non-uniform bounds in local limit theorem in case of fractional moments. I. Math. Methods of Statistics, vol. 20 (2011), no. 3, pp. 171-191.
  41. Bobkov, S. G.; Madiman, M.; Wang, L. Fractional generalizations of Young and Brunn-Minkowski inequalities. In: Concentration, Functional Inequalities and Isoperimetry. Proceedings of the International workshop, Contemporary Math., AMS, vol. 545, pp. 35-54, 2011.
  42. Bobkov, S. G.; Madiman, M. Dimensional behaviour of entropy and information. C. R. Math. Acad. Sci. Paris, 349 (2011), no. 3-4, pp. 201–204.
  43. Bobkov, S. G.; Madiman, M. The entropy per coordinate of a random vector is highly constrained under convexity conditions. IEEE Transactions on Information Theory, vol. 57 (2011), no. 8, pp. 4940-4954.
  44. Bobkov, S. G.; Madiman, M. Concentration of the information in data with log-concave distributions. Ann. Probab. 39 (2011), no. 4, pp. 1528–1543.

    2010

    2010

  45. Bobkov, S. G.; Madiman, M. Entropy and the hyperplane conjecture in convex geometry. Information Theory Proceedings (ISIT), 2010 IEEE International Symposium, Austin, Texas, 2010, pp. 1438-1442.
  46. Bobkov, S. G. Gaussian concentration for a class of spherically invariant measures. J. Math. Sciences (New York), vol. 167 (2010), no. 3, pp. 326-339. Translated from: Problems in Math. Analysis, 46 (2010), pp. 45–56. Russian version is here.
  47. Bobkov, S. G. The growth of L^p norms in presence of logarithmic Sobolev inequalities. Vestnik Syktyvkar Univ., Ser. 1 (2010), no. 11, pp. 92-111.
  48. Bobkov, S. G. Convex bodies and norms associated to convex measures. Probab. Theory Related Fields, 147 (2010), no. 1-2, pp. 303–332.
  49. Bobkov, S. G.; Götze, F.; Tikhomirov, A. N. On concentration of empirical measures and convergence to the semi-circle law. J. Theor. Probab. 23 (2010), no. 3, pp. 792–823.
  50. Bobkov, S. G.; Götze, F. Concentration of empirical distribution functions with applications to non-i.i.d. models. Bernoulli, 16 (2010), no. 4, pp. 1385–1414.
  51. Bobkov, S. G. Perturbations in the Gaussian isoperimetric inequality. J. Math. Sciences (New York), vol. 166 (2010), no. 3, pp. 225-238. Translated from: Problems in Math. Analysis, 45 (2010), pp. 3-14. Russian version is here.
  52. Bobkov, S. G. On concentration of measure on the cube. J. Math. Sciences (New York), vol. 165 (2010), no. 1, pp. 60-70. Translated from: Problems in Math. Analysis, 44 (2010), pp. 55-64. Russian version is here.
  53. Bobkov, S. G.; Zegarlinski, B. Distributions with slow tails and ergodicity of Markov semigroups in infinite dimensions. Around the research of Vladimir Maz'ya. I, pp. 13-79, Int. Math. Ser. (N. Y.), 11, Springer, New York, 2010.

    2007-2009

    2007-2009

  54. Bobkov, S. G. On a theorem of V. N. Sudakov on typical distributions. (Russian) J. Math. Sciences (New York), vol. 167 (2010), no. 4, pp. 464-473. Translated from: Zap. Nauchn. Semin. POMI, vol. 368 (2009), pp. 59-74. Russian version is here.
  55. Bobkov, S. G.; Ledoux, M. On weighted isoperimetric and Poincare-type inequalities. IMS Collections. High Dimensional Probability V: The Luminy Volume. Vol. 5 (2009), pp. 1–29.
  56. Bobkov, S. G.; Ledoux, M. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 (2009), no. 2, pp. 403–427.
  57. Bobkov, S. G.; Götze, F.; Tikhomirov, A. N. On the concentration of high dimensional matrices with randomly signed entries. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 364 (2009), Veroyatnost i Statistika. 14.2, pp. 32–69.
  58. Bobkov, S. G. On the isoperimetric constants for product measures. J. Math. Sci. (N.Y.), vol. 159 (2009), no. 1, pp. 47–53. Translated from: Problems in Math. Analysis, 40 (2009), pp. 49–56.
  59. Bobkov, S. G.; Götze, F. Hardy type inequalities via Riccati and Sturm-Liouville equations. Sobolev spaces in mathematics. I, pp. 69–86, Int. Math. Ser. (N. Y.), 8, Springer, New York, 2009.
  60. Bobkov, S. G. A note on the distributions of the maximum of linear Bernoulli processes. Electron. Commun. Probab. 13 (2008), pp. 266–271.
  61. Bobkov, S. G.; Ledoux, M. From Brunn-Minkowski to sharp Sobolev inequalities. Ann. Mat. Pura Appl. (4) 187 (2008), no. 3, pp. 369–384.
  62. Bobkov, S. G.; Nazarov, F. L. Sharp dilation-type inequalities with fixed parameter of convexity. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 351 (2007), Veroyatnost i Statistika. 12, pp. 54-78. Translation in J. Math. Sci. (N. Y.) 152 (2008), no. 6, pp. 826–839.
  63. Bobkov, S. G. On isoperimetric constants for log-concave probability distributions. Geometric aspects of functional analysis, pp. 81–88, Lecture Notes in Math., 1910, Springer, Berlin, 2007.
  64. Bobkov, S. G. A remark on the surface Brunn-Minkowski-type inequality. Geometric aspects of functional analysis, pp. 77–79, Lecture Notes in Math., 1910, Springer, Berlin, 2007.
  65. Bobkov, S. G. Large deviations and isoperimetry over convex probability measures with heavy tails. Electr. J. Probab. 12 (2007), pp. 1072-1100.
  66. Bobkov, S. G.; Götze, F. Concentration inequalities and limit theorems for randomized sums. Probab. Theory Related Fields, 137 (2007), no. 1-2, pp. 49–81.

    2003-2006

    2003-2006

  67. Bobkov, S. G; Tetali, P Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19 (2006), no. 2, pp. 289–336.
  68. Bobkov, S. G.; Houdré, C.; Tetali, P. The subgaussian constant and concentration inequalities. Israel J. Math. 156 (2006), pp. 255–283.
  69. Bobkov, S. G. Generalized symmetric polynomials and an approximate de Finetti representation. J. Theoret. Probab. 18 (2005), no. 2, pp. 399–412.
  70. Bobkov, S. G.; Zegarlinski, B. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005), no. 829, x+69 pp.
  71. Bobkov, S. G. Concentration of normalized sums and a central limit theorem for noncorrelated random variables. Ann. Probab. 32 (2004), no. 4, pp. 2884-2907.
  72. Bobkov, S. G.; Götze, F. Complement to the paper: "On the central limit theorem along subsequences of noncorrelated observations" [Teor. Veroyatnost. i Primenen. 48 (2003), no. 4, 745-765]. Teor. Probab. Appl. 49 (2004), no. 2, pp. 373–375.
  73. Bobkov, S. G.; Götze, F. On the central limit theorem along subsequences of noncorrelated observations. Teor. Veroyatnost. i Primenen. 48 (2003), no. 4, pp. 745-765. Translation in: Theory Probab. Appl. 48 (2004), no. 4, pp. 604–621.
  74. Bobkov, S. G; Tetali, P Modified log-Sobolev inequalities, mixing and hypercontractivity. Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 287–296 (electronic), ACM, New York, 2003.
  75. Bobkov, S. G.; Nazarov, F. L. Large deviations of typical linear functionals on a convex body with unconditional basis. Stochastic inequalities and applications, pp. 3–13, Progr. Probab., 56, Birkhäuser, Basel, 2003.
  76. Bobkov, S. G.; Nazarov, F. L. On convex bodies and log-concave probability measures with unconditional basis. Geometric aspects of functional analysis, pp. 53–69, Lecture Notes in Math., 1807, Springer, Berlin, 2003.
  77. Bobkov, S. G.; Koldobsky, A. On the central limit property of convex bodies. Geometric aspects of functional analysis, pp. 44–52, Lecture Notes in Math., 1807, Springer, Berlin, 2003.
  78. Bobkov, S. G. Spectral gap and concentration for some spherically symmetric probability measures. Geometric aspects of functional analysis, pp. 37–43, Lecture Notes in Math., 1807, Springer, Berlin, 2003.
  79. Bobkov, S. G. Concentration of distributions of the weighted sums with Bernoullian coefficients. Geometric aspects of functional analysis, pp. 27–36, Lecture Notes in Math., 1807, Springer, Berlin, 2003.
  80. Bobkov, S. G. Large deviations via transference plans. Advances in mathematics research, Vol. 2, pp. 151–175, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003.
  81. Bobkov, S. G. On concentration of distributions of random weighted sums. Ann. Probab. 31 (2003), no. 1, pp. 195–215.

    1999-2002

    1999-2002

  82. Bobkov, S. G. Localization proof of the isoperimetric Bakry-Ledoux inequality and some applications. Teor. Veroyatnost. i Primenen. 47 (2002), no. 2, pp. 340--346. Translation in: Theory Probab. Appl. 47 (2003), no. 2, pp. 308–314.
  83. Bobkov, S. G.; Gentil, I.; Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 80 (2001), no. 7, pp. 669–696.
  84. Bobkov, S. G.; Götze, F.; Houdré, C. On Gaussian and Bernoulli covariance representations. Bernoulli 7 (2001), no. 3, pp. 439–451.
  85. Bobkov, S. G. Some generalizations of Prokhorov's results on Khinchin-type inequalities for polynomials. (Russian) Teor. Veroyatnost. i Primenen. 45 (2000), no. 4, pp. 745-748. Translation in: Theory Probab. Appl. 45 (2002), no. 4, pp. 644–647.
  86. Bobkov, S. G.; Ledoux, M. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000), no. 5, pp. 1028–1052.
  87. Bobkov, S. G. Remarks on the growth of Lp-norms of polynomials. Geometric aspects of functional analysis, pp. 27–35, Lecture Notes in Math., 1745, Springer, Berlin, 2000.
  88. Bobkov, S. G.; Houdré, C. Weak dimension-free concentration of measure. Bernoulli 6 (2000), no. 4, pp. 621–632.
  89. Bobkov, S. G.; Houdré, C.; Tetali, P. λ∞, vertex isoperimetry and concentration. Combinatorica 20 (2000), no. 2, pp. 153–172.
  90. Bobkov, S. G. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999), no. 4, pp. 1903–1921.
  91. Bobkov, S. G. The size of singular component and shift inequalities. Ann. Probab. 27 (1999), no. 1, pp. 416–431.
  92. Bobkov, S. G.; Houdré, C. A converse Gaussian Poincaré-type inequality for convex functions. Statist. Probab. Lett. 44 (1999), no. 3, pp. 281–290.
  93. Bobkov, S. G.; Götze, F. Discrete isoperimetric and Poincaré-type inequalities. Probab. Theory Related Fields 114 (1999), no. 2, pp. 245–277.
  94. Bobkov, S. G.; Götze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999), no. 1, pp. 1–28.

    1996-1998

    1996-1998

  95. Bobkov, S. G. Remarks on the Gromov-Milman inequality. (Russian) Vestnik Syktyvkar Univ., Ser. 1, Mat. Mekh. Inform. No. 3 (1998), pp. 15–22.
  96. Bobkov, S. G.; Ledoux, M. On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156 (1998), no. 2, pp. 347–365.
  97. Bobkov, S. G.; Götze, F. On moments of polynomials. Teor. Veroyatnost. i Primenen. 42 (1997), no. 3, pp. 638--640. Translation in: Theory Probab. Appl. 42 (1997), no. 3, pp. 518–520 (1998).
  98. Bobkov, S. G. Isoperimetric problem for uniform enlargement. Studia Math. 123 (1997), no. 1, pp. 81–95.
  99. Bobkov, S. G.; Houdré, C. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997), no. 1, pp. 184–205.
  100. Bobkov, S. G. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25 (1997), no. 1, pp. 206–214.
  101. Bobkov, S. G.; Ledoux, M. Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107 (1997), no. 3, pp. 383–400.
  102. Bobkov, S. G.; Houdré, C. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111 pp.
  103. Bobkov, S. G.; Houdré, C. Converse Poincaré-type inequalities for convex functions. Statist. Probab. Lett. 34 (1997), no. 1, pp. 37–42.
  104. Bobkov, S. G. Some extremal properties of the Bernoulli distribution. (Russian) Teor. Veroyatnost. i Primenen. 41 (1996), no. 4, pp. 877--884. Translation in: Theory Probab. Appl. 41 (1996), no. 4, pp. 748–755 (1997).
  105. Bobkov, S. G.; Houdré, C. Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996), Veroyatn. i Stat. 1, pp. 31-38, 356. Translation in: J. Math. Sci. (New York) 93 (1999), no. 3, pp. 270–275. Russian version is here.
  106. Bobkov, S. G.; Houdré, C. Variance of Lipschitz functions and an isoperimetric problem for a class of product measures. Bernoulli 2 (1996), no. 3, pp. 249–255.
  107. Bobkov, S. G. Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996), no. 1, pp. 35–48.
  108. Bobkov, S. G. A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal. 135 (1996), no. 1, pp. 39–49.

    1982-1995

    1982-1995

  109. Bobkov, S. G. On the Gross and Talagrand inequalities on the discrete cube. (Russian) Vestn. Syktyvkar. Univ. Ser. 1 Mat. Mekh. Inform. No. 1 (1995), pp. 12–19.
  110. Bobkov, S. G. The Gaussian oscillation on convex sets. Proceedings of the St. Petersburg Mathematical Society, Vol. IV, pp. 1–17, 1994. Translation in: Amer. Math. Soc. Transl. Ser. 2, 188, Amer. Math. Soc., Providence, RI, 1999.
  111. Bobkov, S. G. Isoperimetric inequalities for distributions of exponential type. Ann. Probab. 22 (1994), no. 2, pp. 978–994.
  112. Bobkov, S. G. An isoperimetric problem on the line. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 216 (1994), Problemy Teorii Veroyatnost. Raspred. 13, pp. 5-9. Translation in: J. Math. Sci. (New York) 88 (1998), no. 1, pp. 3–6.
  113. Bobkov, S. G. On logarithmically concave measures and their application to random processes that are linearly generated by independent variables. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 194 (1992), Problemy Teorii Veroyatnost. Raspred. 12, pp. 28-29. Translation in: J. Math. Sci. 75 (1995), no. 5, p. 1889.
  114. Bobkov, S. G. Maximum likelihood estimation of a density as an infinite-dimensional Gaussian shift. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 177 (1989), Problemy Teorii Veroyatnost. Raspred. XI, 6-7. Translation in: J. Soviet Math. 61 (1992), no. 1, pp. 1825–1826.
  115. Bobkov, S. G. Upper functions and oscillating Gaussian processes. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 158 (1987), Probl. Teor. Veroyatn. Raspred. X, 5-13. Translation in: J. Soviet Math. 43 (1988), no. 6, pp. 2745–2751.
  116. Bobkov, S. G. Variations of random processes with independent increments. Problems of the theory of probability distributions, VIII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 130 (1983), pp. 25–35.
  117. Bobkov, S. G. Compact sets of additive measures. Problems of the theory of probability distributions, VII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 119 (1982), pp. 14–18.

    Back to Home Page

    Links

    School of Mathematics
    Institute of Technology
    University of Minnesota

    Last Modified Friday May 12, 2017
    The views and opinions expressed in this page are strictly those of the page author. The contents of this page have not been reviewed or approved by the University of Minnesota.
  118. Bobkov, S. G.; Melbourne, J. Hyperbolic measures on infinite dimensional spaces. Preprint (2014).